Câu hỏi:

25/07/2023 127

Cho a, b, c > 0. Chứng minh rằng:

\(\sqrt {\frac{{{a^3}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt {\frac{{{b^3}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt {\frac{{{c^3}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} \le \sqrt {\frac{{a + b + c}}{3}} \).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Áp dụng BĐT Bunhiacopxki, ta có:

\({\left( {\sqrt {\frac{{{a^3}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt {\frac{{{b^3}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt {\frac{{{c^3}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} } \right)^2}\)

\( = {\left( {\sqrt a \sqrt {\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt b \sqrt {\frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt c \sqrt {\frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} } \right)^2}\)

\( \le \left( {a + b + c} \right)\left( {\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}} + \frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}} + \frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} \right)\)

Ta cần chứng minh: \(\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}} + \frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}} + \frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}} \le \frac{1}{3}\).

Không mất tính tổng quát ta giả sử

\(a + b + c = 1;\;a \ge b \ge c \Rightarrow a \ge \frac{1}{3} \ge c\)

BĐT trở thành

• Xét \(c \ge \frac{1}{8}\), thì ta có:

\(9 - \sum {\frac{{27{a^2}}}{{6{a^2} - 2a + 1}} = } \sum {\left( {12a - 1 - \frac{{27{a^2}}}{{6{a^2} - 2a + 1}}} \right) = } \sum {\frac{{{{\left( {3a - 1} \right)}^2}\left( {8a - 1} \right)}}{{6{a^2} - 2a + 1}} \ge 0} \)

• Xét \(c \le \frac{1}{8}\), thì ta có:

\(6\left( {VT - VP} \right) = \frac{{2a - 1}}{{6{a^2} - 2a + 1}} + \frac{{2b - 1}}{{6{b^2} - 2b + 1}} + \frac{{2c - 1}}{{6{c^2} - 2c + 1}}\)

\( = \frac{{a - b - c}}{{6{a^2} - 2a + 1}} + \frac{{b - c - a}}{{6{b^2} - 2b + 1}} + \frac{{6{c^2}}}{{6{c^2} - 2c + 1}}\)

\( = \frac{{2{{\left( {a - b} \right)}^2}\left( {3c - 2} \right)}}{{\left( {6{a^2} - 2a + 1} \right)\left( {6{b^2} - 2b + 1} \right)}} + c\left( {\frac{{6c}}{{6{c^2} - 2c + 1}} - \frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}}} \right)\)

Ta cần chứng=  minh \(\frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}} \ge \frac{{6c}}{{6{c^2} - 2c + 1}}\)

Do \(c \le \frac{1}{8} \Rightarrow \frac{{6c}}{{6{c^2} - 2c + 1}} \le 1\)

Suy ra cần chứng minh \(\frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}} \ge 1\)

+) Xét \(b \le \frac{1}{3} \Rightarrow \frac{1}{{6{b^2} - 2b + 1}} \ge 1\)

+) Xét \(b \ge \frac{1}{3}\). Áp dụng BĐT Cauchy ta có:

4 ³ 6(a2 + b2) − 2(a + b) + 2

Hay [2(a + b) + c](a + b + c) ³ 3(a2 + b2)

Do \(b \ge \frac{1}{3}\) Þ 3b ³ a Þ [2(a + b) + c](a + b + c) ³ 2(a + b)2

= 3(a + b)2 + 4ab − a2 − b2 ³ 3(a2 + b2) + 3ab − a2 ³ 3(a2 + b2).

Vậy BĐT được chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho một cấp số cộng (un) có u1 = 5 và tổng 50 số hạng đầu bằng 5150. Tìm công thức của số hạng tổng quát un.

Xem đáp án » 13/07/2024 5,740

Câu 2:

Trong mặt phẳng Oxy cho A(−2m; − m), B(2m; m). Với giá trị nào của m thì đường thẳng AB đi qua O? 

Xem đáp án » 12/07/2024 5,199

Câu 3:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).

Xem đáp án » 13/07/2024 3,636

Câu 4:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem đáp án » 13/07/2024 3,397

Câu 5:

Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:

a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.

b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].

Xem đáp án » 13/07/2024 2,793

Câu 6:

Hình chiếu bằng của hình lăng trụ tam giác đều là hình gì nếu mặt đáy song song với mặt phẳng chiếu bằng bao nhiêu?

Xem đáp án » 11/07/2024 2,669

Câu 7:

Chứng minh: \(\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} ,\;\forall a,\;b,\;c,\;d \in \mathbb{R}\).

Xem đáp án » 13/07/2024 2,181

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store