Câu hỏi:

12/07/2024 2,160

Cho x2 + y2 + xy = 1. Tìm GTNN, GTLN của A = x2 − xy + 2y2.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

\[A = {x^2} - {\rm{ }}xy + 2{y^2} = \frac{{{x^2} - {\rm{ }}xy + 2{y^2}}}{1} = \frac{{{x^2} - {\rm{ }}xy + 2{y^2}}}{{{x^2} + xy + {y^2}}}\]

Với y = 0 Þ A = 1.

Với y ¹ 0, chia cả tử và mẫu của vế phải cho y2

\( \Rightarrow A = \frac{{{{\left( {\frac{x}{y}} \right)}^2} - \frac{x}{y} + 2}}{{{{\left( {\frac{x}{y}} \right)}^2} + \frac{x}{y} + 1}}\).

Đặt \(\frac{x}{y} = a \Rightarrow A = \frac{{{a^2} - a + 2}}{{{a^2} + a + 1}}\)

Û A.a2 + A.a + A = a2 − a + 2

Û (A − 1).a2 + (A + 1).a + A − 2 = 0

D = (A + 1)2 − 4(A − 1)(A − 2) ³ 0

Û −3A2 + 14A − 7 ³ 0

\( \Rightarrow \frac{{7 - 2\sqrt 7 }}{3} \le A \le \frac{{7 + 2\sqrt 7 }}{3}\).

Vậy \(\left\{ \begin{array}{l}{A_{\min }} = \frac{{7 - 2\sqrt 7 }}{3}\\{A_{\max }} = \frac{{7 + 2\sqrt 7 }}{3}\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng Oxy cho A(−2m; − m), B(2m; m). Với giá trị nào của m thì đường thẳng AB đi qua O? 

Xem đáp án » 12/07/2024 7,846

Câu 2:

Cho một cấp số cộng (un) có u1 = 5 và tổng 50 số hạng đầu bằng 5150. Tìm công thức của số hạng tổng quát un.

Xem đáp án » 13/07/2024 7,160

Câu 3:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem đáp án » 13/07/2024 4,894

Câu 4:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).

Xem đáp án » 13/07/2024 4,331

Câu 5:

Khi quay nửa hình tròn một vòng quanh đường kính cố định, ta được:

Xem đáp án » 12/07/2024 3,552

Câu 6:

Hình chiếu bằng của hình lăng trụ tam giác đều là hình gì nếu mặt đáy song song với mặt phẳng chiếu bằng bao nhiêu?

Xem đáp án » 11/07/2024 3,521

Câu 7:

Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:

a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.

b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].

Xem đáp án » 13/07/2024 3,115

Bình luận


Bình luận