Câu hỏi:

12/07/2024 886

Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của

\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Áp dụng BĐT Cauchy, ta được:

\({x^2} + {y^2} \ge 2\sqrt {{x^2}{y^2}} = 2xy \Rightarrow 2xy \le 2 \Leftrightarrow xy \le 1\)

Khi đó:  \(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}} \ge \frac{{2 + 1}}{{1 + 1}} = \frac{3}{2}\). Dấu “=” xảy ra khi x = y = 1.

Vậy GTNN của A là \(\frac{3}{2}\) khi x = y = 1.

Lại có \(\left\{ \begin{array}{l}x;\;y \ge 0\\{x^2} + {y^2} = 2\end{array} \right. \Rightarrow 0 \le x;\;y \le \sqrt 2 \)

\[ \Rightarrow {x^2}\left( {x - \sqrt 2 } \right) \le 0 \Rightarrow {x^3} \le {x^2}\sqrt 2 \]

Tương tự: \[{y^3} \le {y^2}\sqrt 2 \].

Mặt khác: x; y ³ 0 Þ xy + 1 ³ 1

\( \Rightarrow A \le \frac{{{a^2}\sqrt 2 + {b^2}\sqrt 2 + 1}}{1} = 1 + 2\sqrt 2 \).

Vậy GTLN của A là \(1 + 2\sqrt 2 \) khi \(\left( {a;\;b} \right) = \left( {0;\;\sqrt 2 } \right)\) và hoán vị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng Oxy cho A(−2m; − m), B(2m; m). Với giá trị nào của m thì đường thẳng AB đi qua O? 

Xem đáp án » 12/07/2024 7,191

Câu 2:

Cho một cấp số cộng (un) có u1 = 5 và tổng 50 số hạng đầu bằng 5150. Tìm công thức của số hạng tổng quát un.

Xem đáp án » 13/07/2024 7,095

Câu 3:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem đáp án » 13/07/2024 4,229

Câu 4:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).

Xem đáp án » 13/07/2024 3,922

Câu 5:

Hình chiếu bằng của hình lăng trụ tam giác đều là hình gì nếu mặt đáy song song với mặt phẳng chiếu bằng bao nhiêu?

Xem đáp án » 11/07/2024 3,488

Câu 6:

Khi quay nửa hình tròn một vòng quanh đường kính cố định, ta được:

Xem đáp án » 12/07/2024 3,112

Câu 7:

Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:

a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.

b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].

Xem đáp án » 13/07/2024 3,037

Bình luận


Bình luận