Câu hỏi:

25/07/2023 138

Cho a, b, c là các số dương tùy ý. Chứng minh rằng:

\[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: \(b + c + 2a = \left( {a + b} \right) + \left( {a + c} \right) \ge 2\sqrt {\left( {a + b} \right)\left( {a + c} \right)} \)

\( \Rightarrow \left( {a + b} \right)\left( {a + c} \right) \le \frac{{{{\left( {a + b + a + c} \right)}^2}}}{4}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{{a + b + a + c}}{{4\left( {a + b} \right)\left( {a + c} \right)}}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{1}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\)

\[ \Rightarrow \frac{{bc}}{{b + c + 2a}} \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\]

Tương tự ta có:

\[\frac{{ca}}{{c + a + 2b}} \le \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right)\]

\[\frac{{ab}}{{a + b + 2c}} \le \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\]

Suy ra \(VT = \frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}}\)

\( \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right) + \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right) + \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\left( {bc + ac} \right) + \frac{1}{{a + c}}\left( {bc + ab} \right) + \frac{1}{{b + c}}\left( {ac + ab} \right)} \right]\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\,.\,c\left( {b + a} \right) + \frac{1}{{a + c}}\,.\,b\left( {c + a} \right) + \frac{1}{{b + c}}\,.\,a\left( {c + b} \right)} \right]\)

\( = \frac{1}{4}\left( {c + b + a} \right) = \frac{{a + b + c}}{4} = VP\).

Vậy \[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\] (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17]. Tính xác suất để ba số được viết ra có tổng chia hết cho 3.

Xem đáp án » 12/07/2024 12,972

Câu 2:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem đáp án » 13/07/2024 10,470

Câu 3:

Trong mặt phẳng Oxy cho A(−2m; − m), B(2m; m). Với giá trị nào của m thì đường thẳng AB đi qua O? 

Xem đáp án » 12/07/2024 8,559

Câu 4:

Cho một cấp số cộng (un) có u1 = 5 và tổng 50 số hạng đầu bằng 5150. Tìm công thức của số hạng tổng quát un.

Xem đáp án » 13/07/2024 7,495

Câu 5:

Khi quay nửa hình tròn một vòng quanh đường kính cố định, ta được:

Xem đáp án » 12/07/2024 7,082

Câu 6:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).

Xem đáp án » 13/07/2024 5,588

Câu 7:

Chứng minh: \(\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} ,\;\forall a,\;b,\;c,\;d \in \mathbb{R}\).

Xem đáp án » 13/07/2024 4,013
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua