Cho a, b, c là số thực dương thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của: \[P = \frac{{ab}}{{\sqrt {ab + 2c} }} + \frac{{bc}}{{\sqrt {bc + 2a} }} + \frac{{ca}}{{\sqrt {ca + 2b} }}\].
Quảng cáo
Trả lời:

Lời giải
Áp dụng BĐT Cauchy, ta có:
\(\frac{{ab}}{{\sqrt {ab + 2c} }} = \frac{{ab}}{{\sqrt {ab + \left( {a + b + c} \right)c} }} = \frac{{ab}}{{\sqrt {ab + ac + bc + {c^2}} }}\)
\( = \frac{{ab}}{{\sqrt {\left( {a + c} \right)\left( {b + c} \right)} }} \le \frac{1}{2}\left( {\frac{{ab}}{{a + c}} + \frac{{ab}}{{b + c}}} \right)\)
Tương tự, ta cũng có:
• \(\frac{{bc}}{{\sqrt {bc + 2a} }} \le \frac{1}{2}\left( {\frac{{bc}}{{a + b}} + \frac{{bc}}{{a + c}}} \right)\);
• \(\frac{{ca}}{{\sqrt {ca + 2b} }} \le \frac{1}{2}\left( {\frac{{ca}}{{a + b}} + \frac{{ca}}{{b + c}}} \right)\)
Cộng theo vế 3 BĐT trên ta có:
\(P \le \frac{1}{2}\left( {\frac{{ab + bc}}{{a + c}} + \frac{{bc + ca}}{{a + b}} + \frac{{ab + ca}}{{b + c}}} \right)\)
\( = \frac{1}{2}\left( {\frac{{b\left( {a + c} \right)}}{{a + c}} + \frac{{c\left( {a + b} \right)}}{{a + b}} + \frac{{a\left( {b + c} \right)}}{{b + c}}} \right)\)
\( = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\,.\,2 = 1\).
Dấu “=” xảy ra khi \(a = b = c = \frac{2}{3}\).
Vậy GTLN của P là 1 khi \(a = b = c = \frac{2}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173
Phân đoạn [1; 17] thành ba tập:
X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử
Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử
Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử
• TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.
• TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.
Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).
Lời giải
Lời giải
Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.
Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].
Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).
Vậy có 20 . 24 = 480 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Nguyễn Minh Trí
Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ
Nguyễn Minh Trí
Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ
Nguyễn Minh Trí
Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ
Nguyễn Minh Trí
Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ
Nguyễn Minh Trí
Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ