Câu hỏi:

12/07/2024 2,694

Cho a, b, c là số thực dương thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của: \[P = \frac{{ab}}{{\sqrt {ab + 2c} }} + \frac{{bc}}{{\sqrt {bc + 2a} }} + \frac{{ca}}{{\sqrt {ca + 2b} }}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Áp dụng BĐT Cauchy, ta có:

\(\frac{{ab}}{{\sqrt {ab + 2c} }} = \frac{{ab}}{{\sqrt {ab + \left( {a + b + c} \right)c} }} = \frac{{ab}}{{\sqrt {ab + ac + bc + {c^2}} }}\)

\( = \frac{{ab}}{{\sqrt {\left( {a + c} \right)\left( {b + c} \right)} }} \le \frac{1}{2}\left( {\frac{{ab}}{{a + c}} + \frac{{ab}}{{b + c}}} \right)\)

Tương tự, ta cũng có:

\(\frac{{bc}}{{\sqrt {bc + 2a} }} \le \frac{1}{2}\left( {\frac{{bc}}{{a + b}} + \frac{{bc}}{{a + c}}} \right)\);

\(\frac{{ca}}{{\sqrt {ca + 2b} }} \le \frac{1}{2}\left( {\frac{{ca}}{{a + b}} + \frac{{ca}}{{b + c}}} \right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P \le \frac{1}{2}\left( {\frac{{ab + bc}}{{a + c}} + \frac{{bc + ca}}{{a + b}} + \frac{{ab + ca}}{{b + c}}} \right)\)

\( = \frac{1}{2}\left( {\frac{{b\left( {a + c} \right)}}{{a + c}} + \frac{{c\left( {a + b} \right)}}{{a + b}} + \frac{{a\left( {b + c} \right)}}{{b + c}}} \right)\)

\( = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\,.\,2 = 1\).

Dấu “=” xảy ra khi \(a = b = c = \frac{2}{3}\).

Vậy GTLN của P là 1 khi \(a = b = c = \frac{2}{3}\).

Avatar

Nguyễn Minh Trí

Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ

Avatar

Nguyễn Minh Trí

Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ

Avatar

Nguyễn Minh Trí

Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ

Avatar

Nguyễn Minh Trí

Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ

Avatar

Nguyễn Minh Trí

Tưởng nó ở dưới mẫu thì phải là dấu lớn hơn hoặc bằng chứ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173

Phân đoạn [1; 17] thành ba tập:

X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử

Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử

Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử

TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.

TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.

Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).

Lời giải

Lời giải

Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.

Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].

Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).

Vậy có 20 . 24 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay