Câu hỏi:
11/07/2024 726Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Xét khai triển: \({\left( {1 + 2x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k\,.\,{{\left( { - 2} \right)}^k}\,.\,{x^k}} \)
\( = C_{10}^0\,.\,{\left( { - 2} \right)^0}\,.\,{x^0} + C_{10}^1\,.\,{\left( { - 2} \right)^1}\,.\,{x^1} + C_{10}^2\,.\,{\left( { - 2} \right)^2}\,.\,{x^2} + ... + C_{10}^{10}\,.\,{\left( { - 2} \right)^{10}}\,.\,{x^{10}}\)
\[ \Rightarrow {a_7} = C_{10}^7\,.\,{\left( { - 2} \right)^7} = - 15\,\,360\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:
a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.
b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].
Câu 6:
Câu 7:
về câu hỏi!