Câu hỏi:

19/08/2025 608 Lưu

Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào được dùng hai lần. Tìm số các cách để chọn những màu cần dùng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn 3 màu trong 5 màu để tô có \[C_5^3\] (cách).

Tô 3 màu vào 3 nước khác nhau trên bản đồ có 3! (cách).

Vậy có tất cả \[C_5^3\,.\,3! = 60\] cách cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi ba số viết ra là a, b, c không gian mẫu n (W) = 173

Phân đoạn [1; 17] thành ba tập:

X = {3; 6; 9; 12; 15} chia hết cho 3 có 5 phần tử

Y = {1; 4; 7; 10; 13; 16} chia cho 3 dư 1 có 6 phần tử

Z = {2; 5; 8; 11; 14; 17} chia cho 3 dư 2 có 6 phần tử

TH1: Cả ba số cùng thuộc 1 trong 3 tập có số cách viết là: 63 + 53 + 63.

TH2: Ba số thuộc 3 tập khác nhau, số cách viết là 3!.6.5.6.

Xác suất là: \(P\left( A \right) = \frac{{{6^3} + {5^3} + {5^3} + 3!\,\,.\,\,6\,\,.\,\,5\,\,.\,\,6}}{{{{17}^3}}} = \frac{{1\,\,637}}{{4\,\,913}}\).

Lời giải

Lời giải

Số tự nhiên thỏa mãn có dạng \[\overline {abcde} \] với a, b, c, d, e Î A và đôi một khác nhau.

Số cách chọn 2 vị trí cho hai chữ số 1 và 5 từ 5 vị trí có sắp thứ tự là: \[A_5^2 = 20\].

Sắp 4 chữ số vào 3 vị trí còn lại có \[A_4^3 = 24\] (cách).

Vậy có 20 . 24 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP