Câu hỏi:

12/07/2024 4,419

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:

a) MN song song với hai mặt phẳng (SBC) và (SAD);

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng: a) MN song song với hai mặt phẳng (SBC) và (SAD); (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trong mặt phẳng (ABCD) có MN là đường trung bình của hình bình hành ABCD nên MN // BC// AD.

Ta có: MN // BC mà BC (SBC) nên MN // (SBC).

Ta lại có: MN // AD mà AD (SAD) nên MN // (SAD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.  a) MNPQ là hình gì?  (ảnh 1)

a) Trong mặt phẳng (ABCD), từ M kẻ đường thẳng song song CD cắt BC tại N.

Gọi K là giao điểm của MN và AC.

Trong mặt phẳng (SAC), từ K kẻ đường thẳng song song với SA cắt SC tại P.

Trong mặt phẳng (SCD), từ P kẻ đường thẳng song song với CD cắt SD ở Q.

Mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.

Lời giải

a) Trong mặt phẳng (SAC) có OM // SA mà SA (SAD) nên OM // (SAD).

Mặt khác SA (SAB) nên OM // (SAB).

b) Ta có: D (OMD) ∩ (SAD) mà OM // SA nên giao tuyến của hai mặt phẳng (OMD) và (SAD) là đường thẳng s đi qua D và song song với SA.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP