Câu hỏi:

12/07/2024 12,081

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là trung điểm của CD, (P) là mặt phẳng qua M song song với SA và BC. Tìm giao tuyến của (P) với các mặt của hình chóp S.ABCD.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là trung điểm của CD, (P) là mặt phẳng qua M song song với SA và BC. Tìm giao tuyến của (P) với các mặt của hình chóp S.ABCD. (ảnh 1)

+) Giao tuyến của (P) và (ABCD):

Từ điểm M kẻ đường thẳng song song với BC cắt AB tại N

Suy ra giao tuyến của (P) và (ABCD) là MN.

+) Giao tuyến của (P) và (SAB):

Từ điểm N kẻ đường thẳng song song với SA cắt SB tại P

Suy ra giao tuyến của (P) và (SAB) là NP.

+) Giao tuyến của (P) và (SBC):

Từ điểm P kẻ đường thẳng song song với BC cắt SC tại Q

Suy ra giao tuyến của (P) và (SBC) là PQ.

+) Giao tuyến của (P) và (SDC) là MQ.

+) Giao tuyến của (P) và (SAD):

Kéo dài MN cắt AD tại K, từ K kẻ đường thẳng d song song với SA.

Suy ra giao tuyến (P) và (SAD) là d.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.

a) MNPQ là hình gì?

Xem đáp án » 12/07/2024 13,378

Câu 2:

Cho tứ diện ABCD và điểm M thuộc cạnh AB. Gọi (α) là mặt phẳng qua M, song song với hai đường thẳng BC và AD. Gọi N, P, Q lần lượt là giao điểm của mặt phẳng (α) với các cạnh AC, CD và DB.

a) Chứng minh MNPQ là hình bình hành.

Xem đáp án » 12/07/2024 10,288

Câu 3:

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC.

a) Chứng minh đường thẳng OM song song với hai mặt phẳng (SAD) và (SBD).

b) Tìm giao tuyến của hai mặt phẳng (OMD) và (SAD).

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC. a) Chứng minh đường thẳng OM song song với hai mặt phẳng (SAD) và (SBD).  (ảnh 1)

Xem đáp án » 12/07/2024 9,397

Câu 4:

Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).

Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).  (ảnh 1)

Xem đáp án » 12/07/2024 3,504

Câu 5:

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:

a) MN song song với hai mặt phẳng (SBC) và (SAD);

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng: a) MN song song với hai mặt phẳng (SBC) và (SAD); (ảnh 1)

Xem đáp án » 12/07/2024 3,149

Câu 6:

c) Tìm giao tuyến của hai mặt phẳng (OMN) và (ABCD).

Xem đáp án » 12/07/2024 2,656

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store