Câu hỏi:
12/07/2024 9,690Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).
a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Ta có: A1D1 // (ABCDEF) và F1C1 // (ABCDEF)
Mà A1D1 cắt F1C1 tại O nên (A1F1D1C1) // (ABCDEF)
+) Ta có: giao tuyến của (ABCDEF) với (AA’B’B) là AB mà (A1F1D1C1) // (ABCDEF) nên giao tuyến của (A1F1D1C1) với (AA’B’B) là đường thẳng đi qua A1 song song với AB cắt BB’ tại B1.
Vì vậy giao tuyến của (A1F1D1C1) với (AA’B’B) là A1B1.
+) Giao tuyến của (A1F1D1C1) với (BB’C’C) là B1C1.
+) Giao tuyến của (A1F1D1C1) với (CC’D’D) là C1D1.
+) Ta có: giao tuyến của (ABCDEF) với (DD’E’E) là DE
Mà (A1F1D1C1) // (ABCDEF) nên giao tuyến của (A1F1D1C1) với (DD’E’E) là đường thẳng đi qua D1 song song với DE cắt EE’ tại E1.
Vì vậy giao tuyến của (A1F1D1C1) với (DD’E’E) là D1E1.
+) Giao tuyến của (A1F1D1C1) với (EE’F’F) là E1F1.
+) Giao tuyến của (A1F1D1C1) với (AA’F’F) là A1F1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình hộp ABCD.A’B’C’D’. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.
Câu 2:
Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:
AA’ + CC’ = BB’ + DD’.
Câu 3:
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của SA, SD.
a) Chứng minh rằng (OMN) // (SBC).
Câu 4:
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo, tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và cắt đoạn thằng AC. Chứng minh các giao tuyến của (α) với hình chóp tạo thành một tam giác đều.
Câu 5:
Cho hình chóp S.ABC có SA = 9, SB = 12, SC = 15. Trên cạnh SA lấy điểm M, N sao cho SM = 4, MN = 3, NA = 2. Vẽ hai mặt phẳng song song với mặt phẳng (ABC), lần lượt đi qua M, N, cắt SB theo thứ tự tại M’, N’ và cắt SC theo thứ tự tại M”, N”. Tính độ dài các đoạn thẳng SM’, M’N’, M”N”, N”C.
Câu 6:
b) Gọi E là trung điểm của AB và F là một điểm thuộc ON. Chứng minh EF song song với (SBC).
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!