Câu hỏi:

13/07/2024 12,191 Lưu

Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng G1G2 song song với đường thẳng CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

+) Trong mặt phẳng ABC, kẻ đường trung tuyến AM (M BC).

Do G1 là trọng tâm của tam giác ABC nên \(\frac{{A{G_1}}}{{AM}} = \frac{2}{3}\).

+) Trong mặt phẳng ABD, kẻ đường trung tuyến AN (N BD).

Do G2 là trọng tâm của tam giác ABD nen \(\frac{{A{G_2}}}{{AN}} = \frac{2}{3}\).

+) Xét tam giác AMN, có \(\frac{{A{G_1}}}{{AM}} = \frac{{A{G_2}}}{{AN}} = \frac{2}{3}\) nên G1G2 // MN (định lí Thalès đảo).

+) Xét tam giác BCD, có: M, N lần lượt là trung điểm của BC, BD

Do đó MN là đường trung bình của tam giác BCD.

Suy ra MN // CD.

G1G2 // MN (chứng minh trên) nên G1G2 // CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Ta có: B (BDK) và B (BCD) nên B là giao điểm của (BDK) và (BCD).

             D (BDK) và D (BCD) nên D là giao điểm của (BDK) và (BCD).

Do đó (BDK) ∩ (BCD) = BD.

• Ta có: M BK mà BK (BDK) nên M (BDK);

             M AI mà AI (AIJ) nên M (AIIJ)

Do đó M là giao điểm của (BDK) và (AIJ)

Tương tự ta cũng có N là giao điểm của (BDK) và (AIJ)

Suy ra (BDK) ∩ (AIJ) = MN.

• Ta có: I BC mà BC (BCD) nên I (BCD)

Lại có I (AIJ) nên I là giao điểm của (BCD) và (AIJ)

Tương tự ta cũng có J là giao điểm của (BCD) và (AIJ)

Suy ra (BCD) ∩ (AIJ) = IJ.

• Xét DBCD có I, J lần lượt là trung điểm của BC, CD nên IJ là đường trung bình của tam giác

Do đó IJ // BD.

• Ta có: (BDK) ∩ (BCD) = BD;

             (BDK) ∩ (AIJ) = MN;

             (BCD) ∩ (AIJ) = IJ;

             IJ // BD.

Suy ra MN // BD.

Lời giải

Lời giải

Media VietJack

Trong mặt phẳng (SAB), có: M, N lần lượt là trung điểm của SA SB

Do đó MN là đường trung bình của tam giác

Suy ra MN // AB và MN = \(\frac{1}{2}\)AB.

Lại có AB // CD (do ABCD là hình thang) và AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN // CD và MN = CD.

Suy ra MNCD là hình bình hành.

Vì vậy MD // NC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP