Câu hỏi:

13/07/2024 18,813

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Ta có: B (BDK) và B (BCD) nên B là giao điểm của (BDK) và (BCD).

             D (BDK) và D (BCD) nên D là giao điểm của (BDK) và (BCD).

Do đó (BDK) ∩ (BCD) = BD.

• Ta có: M BK mà BK (BDK) nên M (BDK);

             M AI mà AI (AIJ) nên M (AIIJ)

Do đó M là giao điểm của (BDK) và (AIJ)

Tương tự ta cũng có N là giao điểm của (BDK) và (AIJ)

Suy ra (BDK) ∩ (AIJ) = MN.

• Ta có: I BC mà BC (BCD) nên I (BCD)

Lại có I (AIJ) nên I là giao điểm của (BCD) và (AIJ)

Tương tự ta cũng có J là giao điểm của (BCD) và (AIJ)

Suy ra (BCD) ∩ (AIJ) = IJ.

• Xét DBCD có I, J lần lượt là trung điểm của BC, CD nên IJ là đường trung bình của tam giác

Do đó IJ // BD.

• Ta có: (BDK) ∩ (BCD) = BD;

             (BDK) ∩ (AIJ) = MN;

             (BCD) ∩ (AIJ) = IJ;

             IJ // BD.

Suy ra MN // BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Trong mặt phẳng (SAB), có: M, N lần lượt là trung điểm của SA SB

Do đó MN là đường trung bình của tam giác

Suy ra MN // AB và MN = \(\frac{1}{2}\)AB.

Lại có AB // CD (do ABCD là hình thang) và AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN // CD và MN = CD.

Suy ra MNCD là hình bình hành.

Vì vậy MD // NC.

Lời giải

Lời giải

Media VietJack

+) Ta có: ABCD là hình bình hành nên AD // BC

Mà AB (SAB);

      BC (SBC);

      S (SAB) và S (SBC).

Vì vậy giao tuyến của hai mặt phẳng là đường thẳng d đi qua S và song song với AD và BC.

Vậy (SAB) ∩ (SBC) = d.

+) Trong tam giác SAD, có: M, P lần lượt là trung điểm của SA, SD

Do đó MP là đường trung bình nên MP // AD.

MP (MNP);

      AD (ABCD);

      N (MNP) và N (ABCD).

Vì vậy giao tuyến của hai mặt phẳng là đường thẳng đi qua N và song song với AD và BC, cắt CD tại Q.

Vậy (MNP) ∩ (ABCD) = NQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP