Câu hỏi:
13/07/2024 14,478Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.
a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.
b) Chứng minh rằng IK // BC.
c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a)
Trong tam giác SMN, có: IJ // MN (tính chất đường trung bình) và IJ = \(\frac{1}{2}\)MN.
Trong tam giác SQP, có: LK // QP (tính chất đường trung bình) và LK = \(\frac{1}{2}\)PQ.
Mà QP // AC // MN (tính chất đường trung bình) và PQ = MN = \(\frac{1}{2}\)AC
Do đó IJ // LK và IJ = LK
Vậy qua hai đường thẳng song song ta xác định được duy nhất một mặt phẳng chứa hai đường thẳng song song đó hay I, J, K, L đồng phẳng.
Xét tứ giác IJKL có IJ // LK và IJ = LK nên IJKL là hình bình hành.
b)
Trong tam giác SMP có: IK // MP (tính chất đường trung bình tam giác SMP)
Mà MP // AD // BC (tính chất đường trung bình của hình thang)
Suy ra IK // BC.
c) Ta có: J ∈ SN mà SN ⊂ (SBC) nên J ∈ (SBC)
Lại có J ∈ (IJKL)
Do đó J là giao điểm của (IJKL) và (SBC).
Mặt khác: IK // BC (chứng minh trên);
IK ⊂ (IJKL);
BC ⊂ (SBC).
Do đó giao tuyến của hai mặt phẳng (IJKL) và (SBC) là đường thẳng đi qua J song song với BC cắt SB, SC lần lượt tại B’ và C’.
Vậy (IJKL) ∩ (SBC) = B’C’.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
75 câu trắc nghiệm Giới hạn cơ bản (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
về câu hỏi!