Câu hỏi:
13/07/2024 15,373Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.
a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.
b) Chứng minh rằng IK // BC.
c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a)
Trong tam giác SMN, có: IJ // MN (tính chất đường trung bình) và IJ = \(\frac{1}{2}\)MN.
Trong tam giác SQP, có: LK // QP (tính chất đường trung bình) và LK = \(\frac{1}{2}\)PQ.
Mà QP // AC // MN (tính chất đường trung bình) và PQ = MN = \(\frac{1}{2}\)AC
Do đó IJ // LK và IJ = LK
Vậy qua hai đường thẳng song song ta xác định được duy nhất một mặt phẳng chứa hai đường thẳng song song đó hay I, J, K, L đồng phẳng.
Xét tứ giác IJKL có IJ // LK và IJ = LK nên IJKL là hình bình hành.
b)
Trong tam giác SMP có: IK // MP (tính chất đường trung bình tam giác SMP)
Mà MP // AD // BC (tính chất đường trung bình của hình thang)
Suy ra IK // BC.
c) Ta có: J ∈ SN mà SN ⊂ (SBC) nên J ∈ (SBC)
Lại có J ∈ (IJKL)
Do đó J là giao điểm của (IJKL) và (SBC).
Mặt khác: IK // BC (chứng minh trên);
IK ⊂ (IJKL);
BC ⊂ (SBC).
Do đó giao tuyến của hai mặt phẳng (IJKL) và (SBC) là đường thẳng đi qua J song song với BC cắt SB, SC lần lượt tại B’ và C’.
Vậy (IJKL) ∩ (SBC) = B’C’.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận