CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có: S (SAB) và S (SCD) nên S là giao điểm của (SAB) và (SCD).

Lại có: AB // CD (do ABCD là hình bình hành);

            AB (SAB);

            CD (SCD).

Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.

b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = \(\frac{1}{2}\)BD.

Xét DABC có N là trọng tâm của tam giác nên \(\frac{{BN}}{{BO}} = \frac{2}{3}\) do đó \(\frac{{BN}}{{BD}} = \frac{{BN}}{{2BO}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}\).

Theo bài, AD = 3AM nên \(\frac{{AM}}{{AD}} = \frac{1}{3}\)

Trong mặt phẳng (ABCD), xét DABD có \(\frac{{AM}}{{AD}} = \frac{{BN}}{{BD}} = \frac{1}{3}\)

Do đó MN // AB (theo định lí Thalès đảo)

Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.

Lại có CD (SCD)

Do đó MN // (SCD).

• Gọi I là trung điểm của SA.

Xét DSAB có G là trọng tâm của tam giác nên \(\frac{{BG}}{{BI}} = \frac{2}{3}\)

Trong (BIO), xét DBIO có: \(\frac{{BG}}{{BI}} = \frac{{BN}}{{BO}} = \frac{2}{3}\)

Suy ra GN // IO (theo định lí Thalès đảo)

Mà IO (SAC) nên GN // (SAC).

Lời giải

Lời giải

Media VietJack

• Ta có: S (SAD) và S (SBC) nên S là giao điểm của (SAD) và (SBC).

Lại có: AD // BC (do ABCD là hình bình hành);

            AD (SAD);

            BC (SBC).

Do đó giao tuyến d của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và song song với AD, BC.

• Vì M, N lần lượt là trung điểm của AB và CD nên MN là đường trung bình

Do đó MN // BC // AD.

Ta có: MN // BC mà BC (SBC) nên MN // (SBC);

           MN // AD mà AD (SAD) nên MN // (SAD).

Có: MN // (SBC);

       MN // (SAD);

       (SAD) ∩ (SBC) = d

Suy ra MN // d.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay