Cho hai mặt phẳng song song (P) và (Q). Mặt phẳng (R) cắt mặt phẳng (P) theo giao tuyến a.
a) Mặt phẳng (R) có cắt mặt phẳng (Q) hay không? Tại sao?
b) Trong trường hợp mặt phẳng (R) cắt mặt phẳng (Q) theo giao tuyến b, hãy nêu nhận xét về vị trí tương đối giữa hai giao tuyến a và b (Hình 64).

Cho hai mặt phẳng song song (P) và (Q). Mặt phẳng (R) cắt mặt phẳng (P) theo giao tuyến a.
a) Mặt phẳng (R) có cắt mặt phẳng (Q) hay không? Tại sao?
b) Trong trường hợp mặt phẳng (R) cắt mặt phẳng (Q) theo giao tuyến b, hãy nêu nhận xét về vị trí tương đối giữa hai giao tuyến a và b (Hình 64).
Quảng cáo
Trả lời:

Lời giải
a) Do (P) // (Q) và (R) ∩ (P) = a nên (R) // (Q) hoặc (R) cắt (Q).
Giả sử (R) // (Q).
Khi đó qua đường thẳng a có hai mặt phẳng song song với (Q) là mặt phẳng (P) và (R) nên hai mặt phẳng này trùng nhau, điều này mâu thuẫn với giả thiết (R) cắt (P).
Vậy (R) cắt Q.
b) Ta có: a ⊂ (P); b ⊂ (Q) mà (P) // (Q) nên a và b không có điểm chung.
Lại có hai đường thẳng a và b cùng nằm trên mp(R)
Do đó a // b.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a)
Ta có: BE // AF (do ABEF là hình bình hành);
AF ⊂ (AFD)
Do đó BE // (AFD).
Ta cũng có: BC // AD (do ABCD là hình bình hành)
AD ⊂ (AFD)
Do đó BC // (AFD).
Do BE // (AFD);
BC // (AFD);
BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)
Suy ra (AFD) // (BEC).
b)
+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).
• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.
Khi đó IJ // AF, mà AF ⊂ (AFD) nên IJ // (AFD).
• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.
Khi đó IK // AD, mà AD ⊂ (AFD) nên IK // (AFD).
• Ta có: IJ // (AFD);
IK // (AFD);
IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).
Do đó (IJK) // (AFD).
Mà M ∈ IJ, IJ ⊂ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).
+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).
Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}}\].
Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: \[\frac{{AI}}{{IB}} = \frac{{FM}}{{MB}}\].
Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.
Do M là trọng tâm của DABE nên \(MB = \frac{2}{3}OB\) và \(OM = \frac{1}{3}OB\).
Ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}} = \frac{{FM}}{{MB}} = \frac{{FO + OM}}{{MB}} = \frac{{OB + \frac{1}{3}OB}}{{\frac{2}{3}OB}} = \frac{{\frac{4}{3}OB}}{{\frac{2}{3}OB}} = 2\].
Vậy \(\frac{{AM}}{{NC}} = 2\).
Lời giải
Lời giải
a)
Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.
Trong mp(ABC), xét DABC có G1 là trọng tâm của tam giác nên \(\frac{{A{G_1}}}{{AM}} = \frac{2}{3}\);
Trong mp(ACD), xét DACD có G2 là trọng tâm của tam giác nên \(\frac{{A{G_2}}}{{AN}} = \frac{2}{3}\);
Trong mp(ABD), xét DABD có G3 là trọng tâm của tam giác nên \(\frac{{A{G_3}}}{{AP}} = \frac{2}{3}\).
Trong mp(AMP), xét DAMP có \(\frac{{A{G_1}}}{{AM}} = \frac{{A{G_3}}}{{AP}} = \frac{2}{3}\) nên G1G3 // MP (theo định lí Thalès đảo).
Mà MP ⊂ (BCD) nên G1G3 // (BCD).
Chứng minh tương tự ta cũng có \[\frac{{A{G_2}}}{{AN}} = \frac{{A{G_3}}}{{AP}} = \frac{2}{3}\] nên G2G3 // NP (theo định lí Thalès đảo).
Mà NP ⊂ (BCD) nên G2G3 // (BCD).
Ta có: G1G3 // (BCD);
G2G3 // (BCD);
G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).
Do đó (G1G2G3) // (BCD).
b)
Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.
Giả sử (ABD) ∩ (G1G2G3) = d.
Ta có: (G1G2G3) // (BCD);
(ABD) ∩ (BCD) = BD;
(ABD) ∩ (G1G2G3) = d.
Suy ra d // BD.
Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G3 là giao điểm của (G1G2G3) và (ABD).
Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.
Vậy (G1G2G3) ∩ (ABD) = IK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.