Câu hỏi:

13/07/2024 9,073

Một phòng khám thống kê số bệnh nhân đến khám bệnh mỗi ngày trong 4 tháng năm 2022 ở bảng sau:

Một phòng khám thống kê số bệnh nhân đến khám bệnh mỗi ngày trong 4 tháng năm 2022 ở bảng sau:    a) Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.  (ảnh 1)

a) Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hiệu chỉnh bảng số liệu ta được:

Số bệnh nhân

[0,5; 10,5)

[10,5; 20,5)

[20,5; 30,5)

[30,5; 40,5)

[40,5; 50,5)

Số ngày

7

8

7

6

2

Tổng số số ngày có bệnh nhân đến khám là: 7 + 8 + 7 + 6 + 2 = 30.

Gọi x1; x2; ...; x30 lần lượt là số bệnh nhân đến khám bệnh được sắp xếp theo thứ tự không giảm.

Ta có: x1; ...; x7 [0,5; 10,5), x8; ...; x15 [10,5; 20,5), x16; ...; x22 [20,5; 30,5), x23; ...; x28 [30,5; 40,5), x29; x30 [40,5; 50,5).

Khi đó:

- Tứ phân vị thứ nhất của mẫu số liệu là x8 [10,5; 20,5) nên

Q110,5+30478.20,510,511,1.

- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x15 và x16. Vì x15 [10,5; 20,5) và x16 [20,5; 25,5) nên ta có: Q2 = 20,5.

- Tứ phân vị thứ ba của mẫu số liệu là x24 [30,5; 40,5) nên

Q330,5+3.304226.40,530,531,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tổng số cuộc gọi điện thoại là: 8 + 10 + 7 + 5 + 2 + 1 = 33 (cuộc gọi).

Gọi x1; x2; ...; x33 là số thời gian thực hiện cuộc gọi điện thoại sắp xếp theo thứ tự không giảm.

Ta có: x1; ...; x8 [0; 60), x9; ...; x18 [60; 120), x19; ...; x25 [120; 180), x26; ...; x30 [180; 240), x31; x32 [240; 300), x33 [300; 360).

Khi đó:

- Tứ phân vị thứ hai của dãy số liệu x1; x2; x3; ...; x33 là x17. Vì x17 [60; 120) nên tứ phân vị thứ hai của mẫu số liệu là: Q260+332810.12060=111.

- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x8 và x9 . Vì x8 [0; 60) và x9 [60; 120) nên tứ phân vị thứ nhất của mẫu số liệu là: Q1 = 60.

- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x25 và x26. Vì x25 [120; 180) và x26 [180; 200) nên tứ phân vị thứ ba của mẫu số liệu là: Q3 = 180.

Vậy tứ phân vị của mẫu số liệu là: Q1 = 60; Q2 = 111; Q3 = 180.

Lời giải

Tổng số vận động viên n = 5 + 12 + 32 + 45 + 30 = 124.

Gọi x1; x2; ...; x124 lần lượt là thời gian chạy của 124 vận động viên tham gia hội thao được xếp theo thứ tự không giảm.

Ta có: x1; ...; x5 [21; 21,5), x6; ...; x17 [21,5; 22), x18; ...; x49 [22; 22,5), x50; ...; x94 [22,5; 23), x95; ...; x124 [23; 23,5).

 Số trung vị của dãy số liệu là:  12(x62 + x63)

Mà x62; x63 [22,5; 23) do đó: Me22,5+124249452322,522,6.

Vậy ban tổ chức nên chọn vận động viên có thời gian chạy không quá 22,6 giây.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP