Câu hỏi:
13/07/2024 9,469
Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị : kg).
a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.
Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị : kg).

a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.
Quảng cáo
Trả lời:
a) Ta có bảng tần số ghép lớp như sau:
Cân nặng (kg) |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
Giá trị đại diện |
1,05 |
1,15 |
1,25 |
1,35 |
Số con lợn giống A |
8 |
28 |
32 |
17 |
Số con lợn giống B |
13 |
14 |
24 |
14 |
+) Ước lượng cân nặng trung bình của lợn con giống A là:
(kg).
+) Ước lượng cân nặng trung bình của lợn con giống B là:
(kg).
Suy ra cân nặng trung bình của hai giống lợn con đều gần như nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tổng số cuộc gọi điện thoại là: 8 + 10 + 7 + 5 + 2 + 1 = 33 (cuộc gọi).
Gọi x1; x2; ...; x33 là số thời gian thực hiện cuộc gọi điện thoại sắp xếp theo thứ tự không giảm.
Ta có: x1; ...; x8 ∈ [0; 60), x9; ...; x18 ∈ [60; 120), x19; ...; x25 ∈ [120; 180), x26; ...; x30 ∈ [180; 240), x31; x32 ∈ [240; 300), x33 ∈ [300; 360).
Khi đó:
- Tứ phân vị thứ hai của dãy số liệu x1; x2; x3; ...; x33 là x17. Vì x17 ∈ [60; 120) nên tứ phân vị thứ hai của mẫu số liệu là: Q2 = .
- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x8 và x9 . Vì x8 ∈ [0; 60) và x9 ∈ [60; 120) nên tứ phân vị thứ nhất của mẫu số liệu là: Q1 = 60.
- Tứ phân vị thứ nhất của dãy số liệu x1; x2; x3; ...; x33 là x25 và x26. Vì x25 ∈ [120; 180) và x26 ∈ [180; 200) nên tứ phân vị thứ ba của mẫu số liệu là: Q3 = 180.
Vậy tứ phân vị của mẫu số liệu là: Q1 = 60; Q2 = 111; Q3 = 180.
Lời giải
Tổng số vận động viên n = 5 + 12 + 32 + 45 + 30 = 124.
Gọi x1; x2; ...; x124 lần lượt là thời gian chạy của 124 vận động viên tham gia hội thao được xếp theo thứ tự không giảm.
Ta có: x1; ...; x5 ∈ [21; 21,5), x6; ...; x17 ∈ [21,5; 22), x18; ...; x49 ∈ [22; 22,5), x50; ...; x94 ∈ [22,5; 23), x95; ...; x124 ∈ [23; 23,5).
Số trung vị của dãy số liệu là: (x62 + x63)
Mà x62; x63 ∈ [22,5; 23) do đó: Me = .
Vậy ban tổ chức nên chọn vận động viên có thời gian chạy không quá 22,6 giây.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.