Câu hỏi:
13/07/2024 553Cho ba mặt phẳng song song (P), (Q), (R). Hai cát tuyến bất kì a và a’ cắt ba mặt phẳng song song lần lượt tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với mặt phẳng (Q) (Hình 66).
a) Nêu vị trí tương đối của BB1 và CC’; B1B’ và AA’.
b) Có nhận xét gì về các tỉ số: \(\frac{{AB}}{{A{B_1}}},\frac{{BC}}{{{B_1}C'}}\) và \(\frac{{CA}}{{C'A}};\) \(\frac{{A{B_1}}}{{A'B'}},\frac{{{B_1}C'}}{{B'C'}}\) và \(\frac{{C'A}}{{C'A'}}\).
c) Từ kết quả câu a) và câu b), so sánh các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}}\) và \(\frac{{CA}}{{C'A'}}\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: B ∈ (ACC’) và B ∈ (Q) nên B là giao điểm của (ACC’) và (Q);
B1 ∈ (ACC’) và B1 ∈ (Q) nên B1 là giao điểm của (ACC’) và (Q).
Do đó (ACC’) ∩ (Q) = BB1.
Tương tự, ta có (ACC’) ∩ (R) = CC’.
Ta có: (Q) // (R);
(ACC’) ∩ (Q) = BB1;
(ACC’) ∩ (R) = CC’.
Suy ra BB1 // CC’.
Chứng minh tương tự ta cũng có: (P) // (Q);
(AA’C’) ∩ (P) = AA’;
(AA’C’) ∩ (Q) = B1B’.
Suy ra B1B’ // AA’.
b) Trong mp(ACC’), xét DACC’ có: BB1 // CC’ nên theo định lí Thalès ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\), suy ra \(\frac{{AB}}{{A{B_1}}} = \frac{{CA}}{{C'A}}\);
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\), suy ra \(\frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Do đó \(\frac{{AB}}{{A{B_1}}} = \frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Trong mặt phẳng (AA’C’), xét DAA’C’có: B1B’ // AA’ nên theo định lí Thalès ta có:
• \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\], suy ra \(\frac{{A{B_1}}}{{A'B'}} = \frac{{C'A}}{{C'A'}}\);
• \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\), suy ra \(\frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
Do đó \(\frac{{A{B_1}}}{{A'B'}} = \frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
c) Theo chứng minh ở câu b ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\) và \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\] nên \[\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\left( { = \frac{{A{B_1}}}{{AC'}}} \right)\]
Do đó \[\frac{{AB}}{{A'B'}} = \frac{{CA}}{{C'A'}}\].
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\) và \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\) nên \(\frac{{BC}}{{AC}} = \frac{{B'C'}}{{A'C'}}\left( { = \frac{{{B_1}C'}}{{AC'}}} \right)\)
Do đó \(\frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\).
Vậy \[\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) // (BEC).
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \[\frac{{AN}}{{NC}}\].
Câu 2:
Trong không gian cho hai mặt phẳng phân biệt (P) và (Q).
Nếu (P) và (Q) có một điểm chung thì chúng có bao nhiêu điểm chung? Các điểm chung đó có tính chất gì?
Câu 3:
Câu 4:
Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng (G1G2G3) // (BCD).
b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).
Câu 5:
Câu 6:
Câu 7:
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!