Cho ba mặt phẳng song song (P), (Q), (R). Hai cát tuyến bất kì a và a’ cắt ba mặt phẳng song song lần lượt tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với mặt phẳng (Q) (Hình 66).

a) Nêu vị trí tương đối của BB1 và CC’; B1B’ và AA’.
b) Có nhận xét gì về các tỉ số: \(\frac{{AB}}{{A{B_1}}},\frac{{BC}}{{{B_1}C'}}\) và \(\frac{{CA}}{{C'A}};\) \(\frac{{A{B_1}}}{{A'B'}},\frac{{{B_1}C'}}{{B'C'}}\) và \(\frac{{C'A}}{{C'A'}}\).
c) Từ kết quả câu a) và câu b), so sánh các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}}\) và \(\frac{{CA}}{{C'A'}}\).
Cho ba mặt phẳng song song (P), (Q), (R). Hai cát tuyến bất kì a và a’ cắt ba mặt phẳng song song lần lượt tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với mặt phẳng (Q) (Hình 66).
a) Nêu vị trí tương đối của BB1 và CC’; B1B’ và AA’.
b) Có nhận xét gì về các tỉ số: \(\frac{{AB}}{{A{B_1}}},\frac{{BC}}{{{B_1}C'}}\) và \(\frac{{CA}}{{C'A}};\) \(\frac{{A{B_1}}}{{A'B'}},\frac{{{B_1}C'}}{{B'C'}}\) và \(\frac{{C'A}}{{C'A'}}\).
c) Từ kết quả câu a) và câu b), so sánh các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}}\) và \(\frac{{CA}}{{C'A'}}\).
Quảng cáo
Trả lời:

Lời giải
a) Ta có: B ∈ (ACC’) và B ∈ (Q) nên B là giao điểm của (ACC’) và (Q);
B1 ∈ (ACC’) và B1 ∈ (Q) nên B1 là giao điểm của (ACC’) và (Q).
Do đó (ACC’) ∩ (Q) = BB1.
Tương tự, ta có (ACC’) ∩ (R) = CC’.
Ta có: (Q) // (R);
(ACC’) ∩ (Q) = BB1;
(ACC’) ∩ (R) = CC’.
Suy ra BB1 // CC’.
Chứng minh tương tự ta cũng có: (P) // (Q);
(AA’C’) ∩ (P) = AA’;
(AA’C’) ∩ (Q) = B1B’.
Suy ra B1B’ // AA’.
b) Trong mp(ACC’), xét DACC’ có: BB1 // CC’ nên theo định lí Thalès ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\), suy ra \(\frac{{AB}}{{A{B_1}}} = \frac{{CA}}{{C'A}}\);
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\), suy ra \(\frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Do đó \(\frac{{AB}}{{A{B_1}}} = \frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Trong mặt phẳng (AA’C’), xét DAA’C’có: B1B’ // AA’ nên theo định lí Thalès ta có:
• \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\], suy ra \(\frac{{A{B_1}}}{{A'B'}} = \frac{{C'A}}{{C'A'}}\);
• \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\), suy ra \(\frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
Do đó \(\frac{{A{B_1}}}{{A'B'}} = \frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
c) Theo chứng minh ở câu b ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\) và \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\] nên \[\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\left( { = \frac{{A{B_1}}}{{AC'}}} \right)\]
Do đó \[\frac{{AB}}{{A'B'}} = \frac{{CA}}{{C'A'}}\].
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\) và \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\) nên \(\frac{{BC}}{{AC}} = \frac{{B'C'}}{{A'C'}}\left( { = \frac{{{B_1}C'}}{{AC'}}} \right)\)
Do đó \(\frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\).
Vậy \[\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a)
Ta có: BE // AF (do ABEF là hình bình hành);
AF ⊂ (AFD)
Do đó BE // (AFD).
Ta cũng có: BC // AD (do ABCD là hình bình hành)
AD ⊂ (AFD)
Do đó BC // (AFD).
Do BE // (AFD);
BC // (AFD);
BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)
Suy ra (AFD) // (BEC).
b)
+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).
• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.
Khi đó IJ // AF, mà AF ⊂ (AFD) nên IJ // (AFD).
• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.
Khi đó IK // AD, mà AD ⊂ (AFD) nên IK // (AFD).
• Ta có: IJ // (AFD);
IK // (AFD);
IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).
Do đó (IJK) // (AFD).
Mà M ∈ IJ, IJ ⊂ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).
+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).
Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}}\].
Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: \[\frac{{AI}}{{IB}} = \frac{{FM}}{{MB}}\].
Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.
Do M là trọng tâm của DABE nên \(MB = \frac{2}{3}OB\) và \(OM = \frac{1}{3}OB\).
Ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}} = \frac{{FM}}{{MB}} = \frac{{FO + OM}}{{MB}} = \frac{{OB + \frac{1}{3}OB}}{{\frac{2}{3}OB}} = \frac{{\frac{4}{3}OB}}{{\frac{2}{3}OB}} = 2\].
Vậy \(\frac{{AM}}{{NC}} = 2\).
Lời giải
Lời giải
a)
Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.
Trong mp(ABC), xét DABC có G1 là trọng tâm của tam giác nên \(\frac{{A{G_1}}}{{AM}} = \frac{2}{3}\);
Trong mp(ACD), xét DACD có G2 là trọng tâm của tam giác nên \(\frac{{A{G_2}}}{{AN}} = \frac{2}{3}\);
Trong mp(ABD), xét DABD có G3 là trọng tâm của tam giác nên \(\frac{{A{G_3}}}{{AP}} = \frac{2}{3}\).
Trong mp(AMP), xét DAMP có \(\frac{{A{G_1}}}{{AM}} = \frac{{A{G_3}}}{{AP}} = \frac{2}{3}\) nên G1G3 // MP (theo định lí Thalès đảo).
Mà MP ⊂ (BCD) nên G1G3 // (BCD).
Chứng minh tương tự ta cũng có \[\frac{{A{G_2}}}{{AN}} = \frac{{A{G_3}}}{{AP}} = \frac{2}{3}\] nên G2G3 // NP (theo định lí Thalès đảo).
Mà NP ⊂ (BCD) nên G2G3 // (BCD).
Ta có: G1G3 // (BCD);
G2G3 // (BCD);
G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).
Do đó (G1G2G3) // (BCD).
b)
Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.
Giả sử (ABD) ∩ (G1G2G3) = d.
Ta có: (G1G2G3) // (BCD);
(ABD) ∩ (BCD) = BD;
(ABD) ∩ (G1G2G3) = d.
Suy ra d // BD.
Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G3 là giao điểm của (G1G2G3) và (ABD).
Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.
Vậy (G1G2G3) ∩ (ABD) = IK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.