Câu hỏi:
13/07/2024 458Cho ba mặt phẳng song song (P), (Q), (R). Hai cát tuyến bất kì a và a’ cắt ba mặt phẳng song song lần lượt tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với mặt phẳng (Q) (Hình 66).
a) Nêu vị trí tương đối của BB1 và CC’; B1B’ và AA’.
b) Có nhận xét gì về các tỉ số: \(\frac{{AB}}{{A{B_1}}},\frac{{BC}}{{{B_1}C'}}\) và \(\frac{{CA}}{{C'A}};\) \(\frac{{A{B_1}}}{{A'B'}},\frac{{{B_1}C'}}{{B'C'}}\) và \(\frac{{C'A}}{{C'A'}}\).
c) Từ kết quả câu a) và câu b), so sánh các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}}\) và \(\frac{{CA}}{{C'A'}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: B ∈ (ACC’) và B ∈ (Q) nên B là giao điểm của (ACC’) và (Q);
B1 ∈ (ACC’) và B1 ∈ (Q) nên B1 là giao điểm của (ACC’) và (Q).
Do đó (ACC’) ∩ (Q) = BB1.
Tương tự, ta có (ACC’) ∩ (R) = CC’.
Ta có: (Q) // (R);
(ACC’) ∩ (Q) = BB1;
(ACC’) ∩ (R) = CC’.
Suy ra BB1 // CC’.
Chứng minh tương tự ta cũng có: (P) // (Q);
(AA’C’) ∩ (P) = AA’;
(AA’C’) ∩ (Q) = B1B’.
Suy ra B1B’ // AA’.
b) Trong mp(ACC’), xét DACC’ có: BB1 // CC’ nên theo định lí Thalès ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\), suy ra \(\frac{{AB}}{{A{B_1}}} = \frac{{CA}}{{C'A}}\);
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\), suy ra \(\frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Do đó \(\frac{{AB}}{{A{B_1}}} = \frac{{BC}}{{{B_1}C'}} = \frac{{CA}}{{C'A}}\).
Trong mặt phẳng (AA’C’), xét DAA’C’có: B1B’ // AA’ nên theo định lí Thalès ta có:
• \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\], suy ra \(\frac{{A{B_1}}}{{A'B'}} = \frac{{C'A}}{{C'A'}}\);
• \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\), suy ra \(\frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
Do đó \(\frac{{A{B_1}}}{{A'B'}} = \frac{{{B_1}C'}}{{B'C'}} = \frac{{C'A}}{{C'A'}}\).
c) Theo chứng minh ở câu b ta có:
• \(\frac{{AB}}{{AC}} = \frac{{A{B_1}}}{{AC'}}\) và \[\frac{{A{B_1}}}{{AC'}} = \frac{{A'B'}}{{A'C'}}\] nên \[\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\left( { = \frac{{A{B_1}}}{{AC'}}} \right)\]
Do đó \[\frac{{AB}}{{A'B'}} = \frac{{CA}}{{C'A'}}\].
• \(\frac{{BC}}{{AC}} = \frac{{{B_1}C'}}{{AC'}}\) và \(\frac{{{B_1}C'}}{{AC'}} = \frac{{B'C'}}{{A'C'}}\) nên \(\frac{{BC}}{{AC}} = \frac{{B'C'}}{{A'C'}}\left( { = \frac{{{B_1}C'}}{{AC'}}} \right)\)
Do đó \(\frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\).
Vậy \[\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) // (BEC).
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \[\frac{{AN}}{{NC}}\].
Câu 2:
Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng (G1G2G3) // (BCD).
b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).
Câu 3:
Câu 4:
Trong không gian cho hai mặt phẳng phân biệt (P) và (Q).
Nếu (P) và (Q) có một điểm chung thì chúng có bao nhiêu điểm chung? Các điểm chung đó có tính chất gì?
Câu 5:
Câu 6:
Câu 7:
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
75 câu trắc nghiệm Giới hạn cơ bản (P1)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
về câu hỏi!