Câu hỏi:

13/07/2024 12,598

Cho hình hộp ABCD.A’B’C D’.

a) Chứng minh rằng (ACB’) // (A’C’D).

b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng BG1 = G1G2 = D’G2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

Media VietJack

Ta có: (ABCD) // (A’B’C’D’) ( do ABCD.A’B’C’D’ là hình hộp);

           (ABCD) ∩ (ACC’A’) = AC;

           (A’B’C’D’) ∩ (ACC’A’) = A’C’.

Do đó AC // A’C’.

Mà A’C’ (A’C’D) nên AC // (A’C’D).

Chứng minh tương tự ta cũng có AB’ // DC’ mà DC’ (A’C’D) nên AB’ // (A’C’D).

Ta có: AC // (A’C’D);

          AB’ // (A’C’D);

          AC, AB’ cắt nhau tại điểm A và cùng nằm trong mp(ACB’).

Do đó (ACB’) // (A’C’D).

b)

Media VietJack

• Gọi O là tâm hình bình hành đáy ABCD, I là giao điểm của BD’ và DB’.

Tứ giác BDD’B’ có BB’ // DD’ và BB’ = DD’ nên là hình bình hành.

Do đó hai đường chéo BD’ và DB’ cắt nhau tại trung điểm I của mỗi đường.

Trong mp(BDD’B’), BD’ cắt B’O tại G1.

Mà B’O (ACB’) nên G1 là giao điểm của BD’ với (ACB’).

Trong mp(BDD’B’), xét DBDB’ có hai đường trung tuyến BI, B’O cắt nhau tại G1 nên G1 là trọng tâm của DBDB’

Do đó \(\frac{{B'{G_1}}}{{BO}} = \frac{2}{3}\)

Trong (ACB’), xét DACB’ có B’O là đường trung tuyến và \(\frac{{B'{G_1}}}{{BO}} = \frac{2}{3}\)

Suy ra G1 là trọng tâm của DACB’.

• Gọi O’ là tâm hình bình hành đáy A’B’C’D’.

Chứng minh tương tự như trên ta cũng có: G2 là trọng tâm của DDD’B’ nên \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Trong (A’C’D), DA’C’D có DO’ là đường trung tuyến và \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Suy ra G2 là trọng tâm của DA’C’D.

c) Theo chứng minh câu b, ta có:

• G1 là trọng tâm của DBDB’ nên \(\frac{{B{G_1}}}{{BI}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{1}{2}\)

• G2 là trọng tâm của DDD’B’ nên \(\frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Do đó \(\frac{{B{G_1}}}{{BI}} = \frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Ta có: \(\frac{{B{G_1}}}{{BI}} = \frac{{D'{G_2}}}{{D'I}}\) và BI = D’I (do I là trung điểm của BD’)

Suy ra BG1 = D’G2.

Lại có \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\) nên IG1 = IG2 = \(\frac{1}{2}\)BG1

Do đó G1G2 = IG1 + IG2 = \(\frac{1}{2}\)BG1 + \(\frac{1}{2}\)BG1 = BG1.

Vậy BG1 = G1G2 = D’G2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

Gọi M là trung điểm của BC.

Trong mp(ABC), xét DABC có E, M lần lượt là trung điểm của AC, BC nên EM là đường trung bình của tam giác

Do đó EM // AB và EM = \(\frac{1}{2}\)AB.

Mà AB // A’B’ nên EM // A’B’ hay EM // FB’.

Lại có AB = A’B’ và FB’ = \(\frac{1}{2}\)A’B’ nên EM = FB’.

Trong mp(EMB’F), xét tứ giác EMB’F có EM // FB’ và EM = FB’ nên là hình bình hành.

Do đó EF // B’M, mà B’M (BCC’B’) nên EF // (BCC’B’).

b)

Media VietJack

Gọi N là trung điểm của AB.

Trong mp(ABB’A’), xét hình bình hành ABB’A’ cũng là hình thang có N, F lần lượt là trung điểm của AB, A’B’ nên NF là đường trung bình của hình thang

Do đó NF // BB’ và \[NF = \frac{{AA' + BB'}}{2} = \frac{{2BB'}}{2} = BB'\].

Mà BB’ // CC’ nên NF // CC’.

Lại có BB’ = CC’ nên NF = CC’.

Trong mp(NFC’C), xét tứ giác NFC’C có NF // CC’ và NF = CC’ nên là hình bình hành.

Do đó hai đường chéo CF và NC’ cắt nhau tại trung điểm của mỗi đường.

Lại có NC’ (ABC’) nên CF cắt (ABC’) tại trung điểm I của CF.

Vậy CF cắt (ABC’) tại trung điểm I của CF.

Lời giải

Lời giải

a)

Media VietJack

Trong mp(ADD’A’), xét DAA’D’ có N, Q lần lượt là trung điểm của AA’ và AD’

Do đó NQ là đường trung bình của tam giác

Suy ra NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’.

b)

Media VietJack

Ta có: A’D’ // AD // BC, mà NQ // A’D’ (câu a) nên NQ // BC hay NQ // MC.

Ta cũng có A’D’ = AD = BC, mà NQ = \(\frac{1}{2}\)A’D’ (câu a) nên NQ = \(\frac{1}{2}\)BC

Lại có BM = MC = \(\frac{1}{2}\)BC (do M là trung điểm BC)

Do đó NQ = MC.

Tứ giác MNQC có NQ // MC và NQ = MC nên là MNQC hình bình hành.

c)

Media VietJack

Do MNQC hình bình hành nên MN // QC

Mà QC (ACD’) nên MN // (ACD’).

d)

Media VietJack

Gọi O là trung điểm của ABCD.

Trong (ABCD), xét DABC có O, M lần lượt là trung điểm của AC, BC nên OM là đường trung bình của tam giác

Do đó OM // AB và OM = \(\frac{1}{2}\)AB.

Mà AB // D’P nên OM // D’P.

Lại có D’P = \(\frac{1}{2}\)D’C’ và D’C’ = AB nên OM = D’P.

Xét tứ giác D’PMO có OM // D’P và OM = D’P nên là hình bình hành

Suy ra PM // D’O

Mà D’O (ACD’) nên PM // (ACD’).

Ta có: MN // (ACD’);

           PM // (ACD’);

           MN, PM cắt nhau tại điểm M và cùng nằm trong mp(MNP)

Do đó (MNP) // (ACD’).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay