Câu hỏi:

13/07/2024 23,890

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm các cạnh SA, SB. Chứng minh rằng:

a) MN // (SCD);

b) DM // (SBC);

c) Lấy điểm I thuộc cạnh SD sao cho \(\frac{{SI}}{{SD}} = \frac{2}{3}\). Chứng minh rằng: SB // (AIC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

Media VietJack

Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác

Do đó MN // AB.

Mà AB // CD (giả thiết) nên MN // CD.

Lại có CD (SCD) nên MN // (SCD).

b)

Media VietJack

Theo câu a, MN là đường trung bình của DSAB nên MN = \(\frac{1}{2}\)AB

Mà AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN = CD.

Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành

Suy ra DM // CN

Mà CN (SBC) nên DM // (SBC).

c)

Media VietJack

• Trong mp(ABCD), gọi O là giao điểm của AC và BD.

Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)

Suy ra \(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}}\) hay \(OB\)\(\frac{{OB}}{{DB}} = \frac{2}{3}\)

• Trong mp(SDB), xét DSDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)

Mà IO (AIC) nên SB // (AIC).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFMH), CK // DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (R) đi qua K và song song với mặt phẳng (ABCD).

Media VietJack

a) Hãy giúp bác thợ mộc xác định giao tuyến của mặt phẳng (R) với các mặt của khối gỗ để cắt được chính xác.

b) Gọi I, J lần lượt là giao điểm DH, BF với mặt phẳng (R). Biết BF = 60 cm, DH = 75 cm, CK = 40 cm. Tính FJ.

Xem đáp án » 13/07/2024 22,976

Câu 2:

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.

a) Chứng minh rằng (A’DN) // (B’CM).

b) Gọi E, F lần lượt là giao điểm của đường thẳng D’B với các mặt phẳng (A’DN), (B’CM). Chứng minh rằng D’E = BF = \(\frac{1}{2}\)EF.

Xem đáp án » 13/07/2024 13,252

Câu 3:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, SD. Xác định giao tuyến của mặt phẳng (AMN) với mỗi mặt phẳng sau:

a) (SCD);

b) (SBC).

Xem đáp án » 13/07/2024 9,914

Câu 4:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC.

a) Xác định giao điểm E của đường thẳng MP với mặt phẳng (BCD).

b) Xác định giao điểm Q của đường thẳng CD với mặt phẳng (MNP).

c) Xác định giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).

d) Gọi I là giao điểm của MQ và NP, G là trọng tâm của tam giác ABD. Chứng minh rằng C, I, G thẳng hàng.

Xem đáp án » 13/07/2024 8,474

Câu 5:

Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\).

a) Chứng minh rằng C’M // (A’BM’).

b) Chứng minh rằng G’K // (BCC’B’).

c) Chứng minh rằng (GG’K) // (BCC’B’).

d) Gọi (α) là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC}}{{IC'}}\).

Xem đáp án » 13/07/2024 6,655

Câu 6:

Trong không gian, hai đường thẳng song song với nhau khi và chỉ khi:

A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.

B. Hai đường thẳng không có điểm chung.

C. Hai đường thẳng cùng nằm trong một mặt phẳng.

D. Hai đường thẳng cùng song song với đường thẳng thứ ba.

Xem đáp án » 13/07/2024 4,388
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay