Câu hỏi:
13/07/2024 6,050Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFMH), CK // DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (R) đi qua K và song song với mặt phẳng (ABCD).
a) Hãy giúp bác thợ mộc xác định giao tuyến của mặt phẳng (R) với các mặt của khối gỗ để cắt được chính xác.
b) Gọi I, J lần lượt là giao điểm DH, BF với mặt phẳng (R). Biết BF = 60 cm, DH = 75 cm, CK = 40 cm. Tính FJ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a)
Trong mp(CDHK), qua K vẽ đường thẳng song song với CD, cắt DH tại N.
Trong mp(BCKF), qua K vẽ đường thẳng song song với BC, cắt BF tại P.
Ta có: NK // CD, mà CD ⊂ (ACBD) nên NK // (ABCD).
KP // BC, mà BC ⊂ (ACBD) nên KP // (ABCD).
NK, KP cắt nhau tại K trong mp(NPK).
Do đó (NPK) // (ABCD).
Khi đó mp(R) qua K và song song với (ABCD) chính là mp(NPK).
Trong mp(ADHE), qua N vẽ đường thẳng song song với AD, cắt AE tại Q.
Khi đó mp(R) là mp(NKPQ).
Vậy: (NKPQ) ∩ (ADHE) = QN;
(NKPQ) ∩ (CDHK) = NK;
(NKPQ) ∩ (BCKF) = KP;
(NKPQ) ∩ (ABFE) = PQ.
b)
Ta có: DH cắt NK tại N, mà NK ⊂ (R) nên giao điểm của DH và (R) là điểm N.
Theo bài, I là giao điểm của DH và (R) nên điểm I và điểm N trùng nhau.
Tương tự ta cũng có điểm J trùng với điểm P.
Ta có: (ABCD) // (EFMH) và (R) // (ABCD) nên (EFMH) // (R) // (ABCD).
Lại có, hai cát tuyến FB, HD cắt ba mặt phẳng song song (EFMH), (R), (ABCD) lần lượt tại F, J, B và H, I, D nên theo định lí Thalès ta có: \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\).
Mặt khác, trong mp(CDKH), tứ giác CDIK có CK // DI (do CK // DH) và IK // CD
Do đó CDIK là hình bình hành, suy ra DI = CK = 40 cm.
Khi đó HI = DH – DI = 75 – 40 = 35 (cm).
Vì vậy, từ \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\) ta có: \(\frac{{FJ}}{{35}} = \frac{{60}}{{75}}\), suy ra \(FJ = \frac{{35.60}}{{75}} = 28\) (cm).
Vậy FJ = 28 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm các cạnh SA, SB. Chứng minh rằng:
a) MN // (SCD);
b) DM // (SBC);
c) Lấy điểm I thuộc cạnh SD sao cho \(\frac{{SI}}{{SD}} = \frac{2}{3}\). Chứng minh rằng: SB // (AIC).
Câu 2:
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.
a) Chứng minh rằng (A’DN) // (B’CM).
b) Gọi E, F lần lượt là giao điểm của đường thẳng D’B với các mặt phẳng (A’DN), (B’CM). Chứng minh rằng D’E = BF = \(\frac{1}{2}\)EF.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, SD. Xác định giao tuyến của mặt phẳng (AMN) với mỗi mặt phẳng sau:
a) (SCD);
b) (SBC).
Câu 4:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC.
a) Xác định giao điểm E của đường thẳng MP với mặt phẳng (BCD).
b) Xác định giao điểm Q của đường thẳng CD với mặt phẳng (MNP).
c) Xác định giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).
d) Gọi I là giao điểm của MQ và NP, G là trọng tâm của tam giác ABD. Chứng minh rằng C, I, G thẳng hàng.
Câu 5:
Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\).
a) Chứng minh rằng C’M // (A’BM’).
b) Chứng minh rằng G’K // (BCC’B’).
c) Chứng minh rằng (GG’K) // (BCC’B’).
d) Gọi (α) là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC}}{{IC'}}\).
Câu 6:
Trong không gian, đường thẳng song song với mặt phẳng khi và chỉ khi:
A. Đường thẳng đó song song với một đường thẳng thuộc mặt phẳng.
B. Đường thẳng và mặt phẳng không có điểm chung.
C. Đường thẳng đó không có điểm chung với một đường thẳng thuộc mặt phẳng.
D. Đường thẳng đó không có điểm chung với hai đường thẳng thuộc mặt phẳng.
về câu hỏi!