Câu hỏi:

13/07/2024 6,267

Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\).

a) Chứng minh rằng C’M // (A’BM’).

b) Chứng minh rằng G’K // (BCC’B’).

c) Chứng minh rằng (GG’K) // (BCC’B’).

d) Gọi (α) là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC}}{{IC'}}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

Media VietJack

Trong mp(BCC’B’) có tứ giác BCC’B’ là hình bình hành nên BC // B’C’ và BC = B’C’.

Lại có M, N lần lượt là trung điểm của BC, B’C’ nên BM = C’M’ = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’.

Tứ giác BMC’M’ có BM // C’M’ (do BC // B’C’) và BM = C’M’ nên BMC’M’ là hình bình hành

Do đó C’M // M’B, mà M’B (A’BM’) nên C’M // (A’BM’).

b)

Media VietJack

Trong mp(A’BM’), xét DA’BM’ có \(\frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên G’K // M’B (theo định lí Thalès đảo)

Mà M’B (BCC’B’) nên G’K // (BCC’B’).

c)

Media VietJack

Trong mp(BCC’B’), tứ giác CMM’C’ có C’M’ // CM và C’M’ = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’

Do đó tứ giác CMM’C’ là hình bình hành nên M’M // C’C và M’M = C’C.

 Mà A’A // C’C và A’A = C’C nên A’A // M’M và A’A = M’M.

Khi đó AMM’A’ là hình bình hành nên A’M’ // AM và A’M’ = AM.

Lại có \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{2}{3}\) nên A’G’ = AG, do đó G’M’ = GM.

Xét tứ giác GMM’G’ có: G’M’ = GM (do A’M’ // AM) và G’M’ = GM.

Do đó GMM’G’ là hình bình hành nên G’G // M’M

Lại có M’M (BCC’B’) nên G’G // (BCC’B’).

Ta có: G’K // (BCC’B’);

           G’G // (BCC’B’);

           G’K, G’G cắt nhau tại điểm G’ và cùng nằm trong (GG’K)

Do đó (GG’K) // ((BCC’B’).

d)

Media VietJack

Trong mp(ABB’A’), vẽ đường thẳng qua K và song song với AB, A’B’; cắt A’A và B’B lần lượt tại J và H.

Trong mp (ACC’A”), vẽ đường thẳng qua J và song song với AC, A’C’; cắt C’C tại I.

Ta có: IJ // AC mà AC (ABC) nên IJ // (ABC);

           JK // AB mà AB (ABC) nên JK // (ABC).

Lại có IJ và JK cắt nhau tại J và cùng nằm trong mp(IJK) nên (IJK) // (ABC).

Theo bài, mp(α) // (ABC) và đi qua K nên mp(α) chính là mp(IJK).

Khi đó CC’ cắt (α) tại I.

Ta có: (IJK) // (ABC) mà (ABC) // (A’B’C’) nên (A’B’C’), (IJK), (ABC) là ba mặt phẳng song song với nhau.

Xét hai cát tuyến C’C và A’B bất kì cắt ba mặt phẳng song song (A’B’C’), (IJK), (ABC) lần lượt tại các điểm C’, I, C và A’, K, B. Khi đó theo định lí Thalès trong không gian ta có: \(\frac{{C'I}}{{A'K}} = \frac{{IC}}{{KB}}\)

Suy ra \[\frac{{KB}}{{A'K}} = \frac{{IC}}{{C'I}}\]

Theo bài, \(\frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên \(\frac{{A'B}}{{A'K}} = \frac{3}{2}\) do đó \(\frac{{A'B - A'K}}{{A'K}} = \frac{{3 - 2}}{2}\) hay \(\frac{{KB}}{{A'K}} = \frac{1}{2}\)

Vậy \[\frac{{IC}}{{IC'}} = \frac{{KB}}{{A'K}} = \frac{1}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm các cạnh SA, SB. Chứng minh rằng:

a) MN // (SCD);

b) DM // (SBC);

c) Lấy điểm I thuộc cạnh SD sao cho \(\frac{{SI}}{{SD}} = \frac{2}{3}\). Chứng minh rằng: SB // (AIC).

Xem đáp án » 13/07/2024 21,602

Câu 2:

Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFMH), CK // DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (R) đi qua K và song song với mặt phẳng (ABCD).

Media VietJack

a) Hãy giúp bác thợ mộc xác định giao tuyến của mặt phẳng (R) với các mặt của khối gỗ để cắt được chính xác.

b) Gọi I, J lần lượt là giao điểm DH, BF với mặt phẳng (R). Biết BF = 60 cm, DH = 75 cm, CK = 40 cm. Tính FJ.

Xem đáp án » 13/07/2024 20,312

Câu 3:

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.

a) Chứng minh rằng (A’DN) // (B’CM).

b) Gọi E, F lần lượt là giao điểm của đường thẳng D’B với các mặt phẳng (A’DN), (B’CM). Chứng minh rằng D’E = BF = \(\frac{1}{2}\)EF.

Xem đáp án » 13/07/2024 11,766

Câu 4:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, SD. Xác định giao tuyến của mặt phẳng (AMN) với mỗi mặt phẳng sau:

a) (SCD);

b) (SBC).

Xem đáp án » 13/07/2024 9,619

Câu 5:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC.

a) Xác định giao điểm E của đường thẳng MP với mặt phẳng (BCD).

b) Xác định giao điểm Q của đường thẳng CD với mặt phẳng (MNP).

c) Xác định giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).

d) Gọi I là giao điểm của MQ và NP, G là trọng tâm của tam giác ABD. Chứng minh rằng C, I, G thẳng hàng.

Xem đáp án » 13/07/2024 8,159

Câu 6:

Trong không gian, hai đường thẳng song song với nhau khi và chỉ khi:

A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.

B. Hai đường thẳng không có điểm chung.

C. Hai đường thẳng cùng nằm trong một mặt phẳng.

D. Hai đường thẳng cùng song song với đường thẳng thứ ba.

Xem đáp án » 13/07/2024 3,906

Bình luận


Bình luận
Vietjack official store