Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE=CF. Chứng minh tam giác EDF vuông cân.
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE=CF. Chứng minh tam giác EDF vuông cân.
Quảng cáo
Trả lời:


Xét ΔAED và ΔDCF ta có:
AD = CD (vì ABCD là hình vuông)
AE=CF ( gt)
Do đó ΔAED = ΔCFD (c.g.c)
Suy ra DE=DF (1) (hai cạnh tương ứng) và (hai góc tương ứng).
Suy ra
Hay (2)
Từ (1) và (2) suy ra ΔDEF vuông cân tại D.
Vậy ΔDEF vuông cân tại D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là tâm hình vuông ABCD
Ta có: AC ^ BD; BD ^ SA
Do đó BD ^ (SAC)
Dựng OK ^ SC
Do đó OK là đoạn vuông góc chung của BD và SC
Khi đó (1)
Ta có: AC2 = AB2 + BC2 = 2a2
Suy ra
Thay vào (1) ta có .
Vậy .
Lời giải
Ta có y’ = 3x2 – 2mx – (m – 6)
Để hàm số đồng biến trên (0; 4)
Û y’ ≥ 0 "x Î (0; 4) và y′ = 0 tại một số giá trị hữu hạn.
3x2 − 2mx − (m − 6) ≥ 0 ∀x ∈ (0; 4)
⇔ 3x2 + 6 ≥ m(2x + 1)
Với mọi x ∈ (0; 4) ta có 2x + 1 > 0 nên
⇔ m ≤ min(0; 4) của f(x)
Xét hàm số trên (0; 4) ta có:
Xét bảng biến thiên:

Dựa vào bảng biến thiên ta thấy min(0; 4) của f(x) = f(1) = 3 Û m ≤ 3
Khi m = 3 ta có : y′ = 3x2 − 6x + 3 = 3(x − 1)2 ≥ 0 ∀x ∈ (0;4)
Vậy với m ≤ 3 thì hàm số đồng biến trên (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.