Câu hỏi:

12/07/2024 627

Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. Gọi I là trung điểm của EF. Chứng minh BI = DI.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. Gọi I là trung điểm của EF. Chứng minh  BI = DI. (ảnh 1)

Xét  ΔAED và ΔDCF ta có:

AD = CD (vì ABCD la hình vuông)  

AE = CF ( gt)

DEA^=DCF^=90° 

Do đó ΔAED = ΔCFD (cạnh – góc – cạnh)

Suy ra DE=DF  (1) (hai cạnh tương ứng) và ADE^=CDF^ (hai góc tương ứng).

Suy ra EDC^+CDF^=ADE^+EDC^

Hay EDF^=ADC^=90°   (2)

Từ (1) và (2) suy ra ΔDEF vuông cân tại D.

Mà I là trung điểm của EF nên DI là đường trung tuyến ứng với EF.

Suy ra DI=IE=IF=12EF (định lý đường trung tuyến trong tam giác vuông) (3)

Xét ΔBEF vuông tại B có BI là đường trung tuyến ứng với EF.

Suy ra BI=IE=IF=12EF (định lý đường trung tuyến trong tam giác vuông) (4)

Từ (3) và (4) ta có DI = BI.

Vậy DI = BI.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số: 

y = x3 − mx2 − (m − 6)x + 1 đồng biến trên (0; 4).

Xem đáp án » 12/07/2024 12,893

Câu 2:

Từ một đỉnh tháp chiều cao CD = 80 m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72º12’ và 34º26’. Ba điểm A, B, D thẳng hàng. Tính khoảng cách AB?

Xem đáp án » 12/07/2024 11,021

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD.

Xem đáp án » 12/07/2024 8,957

Câu 4:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).

Xem đáp án » 12/07/2024 6,566

Câu 5:

Tìm m để hàm số y=2xxm+1 xác định trên (0; 2).

Xem đáp án » 12/07/2024 5,808

Câu 6:

Cho hàm số y = f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x2) nghịch biến trên khoảng nào trong các khoảng dưới đây:

Cho hàm số y = f(x) có đạo hàm f '(x) trên R . Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x^2) nghịch biến trên khoảng nào trong các khoảng dưới đây:   (ảnh 1)

A. ;  52;

B. 32;  +;

C. 12;  +;

D. ;  12.

Xem đáp án » 12/07/2024 4,480

Câu 7:

Cho a là góc tù và sinα=45. Tính giá trị của biểu thức: A = 2sin a – cos a.

Xem đáp án » 11/07/2024 4,202

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store