Câu hỏi:

19/08/2025 3,774 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao điểm K của đường thẳng AM với (SBD).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao điểm K của đường thẳng AM với (SBD). (ảnh 1)

Ta có: AM (SAC)

Dễ thấy S (SAC) ∩ (SBD)

Gọi O là giao điểm của AC và BD

Khi đó O AC (SAC),

O BD (SBD)

Do đó O (SAC) ∩ (SBD)

Þ SO = (SAC) ∩ (SBD)

Trong (SAC) gọi AM ∩ SO = {K} 

Ta có: K AM, K SO (SBD) 

Þ AM ∩ (SBD) = {K}.

Vậy giao điểm K của đường thẳng AM với (SBD) là giao điểm của AM và SO.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD. (ảnh 1)

Gọi O là tâm hình vuông ABCD

Ta có: AC ^ BD; BD ^ SA

Do đó BD ^ (SAC)

Dựng OK ^ SC

Do đó OK là đoạn vuông góc chung của BD và SC

Khi đó d(BD;SC)=OK=12d(A;SC)=12SA.ACSA2+AC2 (1)

Ta có: AC2 = AB2 + BC2 = 2a2

Suy ra AC=a2

Thay vào (1) ta có d=a66.

Vậy d=a66.

Lời giải

Trong tam giác vuông CDA: tan72°12'=CDAD

BD=CDtan34°26'=80tan34°26'116,7

Trong tam giác vuông CDB: tan34°26=CDBD

BD=CDtan34°26'=80tan34°26'116,7

AB = BD – AD = 116,7 – 25,7 = 91 (m).

Vậy khoảng cách AB là 91 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP