Câu hỏi:
11/07/2024 2,396Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao điểm K của đường thẳng AM với (SBD).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: AM ⊂ (SAC)
Dễ thấy S ∈ (SAC) ∩ (SBD)
Gọi O là giao điểm của AC và BD
Khi đó O ∈ AC⊂ (SAC),
O ∈ BD ⊂ (SBD)
Do đó O ∈ (SAC) ∩ (SBD)
Þ SO = (SAC) ∩ (SBD)
Trong (SAC) gọi AM ∩ SO = {K}
Ta có: K ∈ AM, K ∈ SO ⊂ (SBD)
Þ AM ∩ (SBD) = {K}.
Vậy giao điểm K của đường thẳng AM với (SBD) là giao điểm của AM và SO.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
y = x3 − mx2 − (m − 6)x + 1 đồng biến trên (0; 4).
Câu 2:
Từ một đỉnh tháp chiều cao CD = 80 m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72º12’ và 34º26’. Ba điểm A, B, D thẳng hàng. Tính khoảng cách AB?
Câu 3:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD.
Câu 4:
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
Câu 6:
Cho hàm số y = f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x2) nghịch biến trên khoảng nào trong các khoảng dưới đây:
A. ;
B. ;
C. ;
D. .
Câu 7:
Cho a là góc tù và . Tính giá trị của biểu thức: A = 2sin a – cos a.
về câu hỏi!