Có 40 học sinh giỏi, mỗi em giỏi ít nhất 1 môn. Có 22 em giỏi Văn, 25 em giỏi Toán, 20 em giỏi Anh. Có 8 em giỏi đúng hai môn Văn, Toán. Có 7 em giỏi đúng hai môn Toán, Anh. Có 6 em giỏi đúng hai môn Anh, Văn. Hỏi có bao nhiêu em giỏi cả ba môn Văn, Toán, Anh?
Có 40 học sinh giỏi, mỗi em giỏi ít nhất 1 môn. Có 22 em giỏi Văn, 25 em giỏi Toán, 20 em giỏi Anh. Có 8 em giỏi đúng hai môn Văn, Toán. Có 7 em giỏi đúng hai môn Toán, Anh. Có 6 em giỏi đúng hai môn Anh, Văn. Hỏi có bao nhiêu em giỏi cả ba môn Văn, Toán, Anh?
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:
Ta có sơ đồ Ven, ta có:

Số học sinh giỏi ít nhất hai môn là:
7 + 6 + 8 = 21 (em)
Số học sinh giỏi cả ba môn Toán, Văn, Anh là:
22 + 25 + 20 – 40 – 21 = 6 (em)
Đáp số: 6 em.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là tâm hình vuông ABCD
Ta có: AC ^ BD; BD ^ SA
Do đó BD ^ (SAC)
Dựng OK ^ SC
Do đó OK là đoạn vuông góc chung của BD và SC
Khi đó (1)
Ta có: AC2 = AB2 + BC2 = 2a2
Suy ra
Thay vào (1) ta có .
Vậy .
Lời giải
Ta có y’ = 3x2 – 2mx – (m – 6)
Để hàm số đồng biến trên (0; 4)
Û y’ ≥ 0 "x Î (0; 4) và y′ = 0 tại một số giá trị hữu hạn.
3x2 − 2mx − (m − 6) ≥ 0 ∀x ∈ (0; 4)
⇔ 3x2 + 6 ≥ m(2x + 1)
Với mọi x ∈ (0; 4) ta có 2x + 1 > 0 nên
⇔ m ≤ min(0; 4) của f(x)
Xét hàm số trên (0; 4) ta có:
Xét bảng biến thiên:

Dựa vào bảng biến thiên ta thấy min(0; 4) của f(x) = f(1) = 3 Û m ≤ 3
Khi m = 3 ta có : y′ = 3x2 − 6x + 3 = 3(x − 1)2 ≥ 0 ∀x ∈ (0;4)
Vậy với m ≤ 3 thì hàm số đồng biến trên (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.