Câu hỏi:
13/07/2024 1,373Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Có \[6.A_6^4 = 2160\] số tự nhiên có 5 chữ số khác nhau lập từ A
Þ n(X) = 2160
Chọn một số từ X, số phần tử của không gian mẫu là n(W) = 2160
Gọi B là biến cố “chọn được số có đúng 3 chữ số chẵn”
Xét: \[\overline {abcde} \] là số tự nhiên có 5 chữ số khác nhau trong đó có đúng 3 chữ số chẵn
• Trường hợp 1: Xét bộ có 5 số trong đó có 3 chữ số chẵn có mặt số 0 và 2 số lẻ. Có tất cả \[C_3^2.C_3^2\] bộ.
Ứng với mỗi bộ có 4.4! (số)
Suy ra có: \[C_3^2.C_3^2.4!.4! = 864\] (số)
• Trường hợp 2: Xét bộ có 5 số trong đó có 3 chữ số chẵn không có số 0 và 2 chữ số lẻ. Có tất cả\[C_3^2\] bộ.
Ứng với mỗi bộ trên có 5! số
Suy ra có: \[C_3^2.5! = 360\] (số)
Do đó số phần tử của biến cố B là n(B) = 1224
Xác suất \[\Delta = {m^2} - 4.1.( - 2) = {m^2} + 8 > 0\,\,\,(\forall m)\].
Vậy xác suất sao cho số được chọn có đúng 3 chữ số chẵn là \[\frac{{281}}{{540}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 6:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!