Câu hỏi:

13/07/2024 5,595

Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách chọn ra 3 học sinh mà không có điều kiện gì là \[C_{50}^3 \Rightarrow n\Omega = C_{50}^3.\]

Gọi biến cố A: “Chọn ra 3 em học sinh mà trong 3 em ấy không có cặp anh em sinh đôi”.

Vì chọn ra 3 học sinh thì không thể có đến hai cặp anh em sinh đôi. Ta sẽ trừ đi các trường hợp có 1 cặp anh em sinh đôi.

Đầu tiên ta chọn 1 cặp sinh đôi: Có 4 cách chọn.

Sau đó chọn 1 học sinh còn lại từ 48 học sinh: Có 48 cách chọn

Do đó số cách chọn 3 em học sinh thỏa yêu cầu đề bài là:

\[C_{50}^3 - 4.48 = 19\,\,408\] (cách)

\[ \Rightarrow {n_A} = 19\,\,408\]

Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{{19\,\,408}}{{C_{50}^3}} = \frac{{1\,\,213}}{{1\,\,225}}.\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để phương trình: cos2x = m – 1 có nghiệm.

Xem đáp án » 13/07/2024 7,161

Câu 2:

Số đo mỗi góc của ngũ giác đều là bao nhiêu?

Xem đáp án » 15/08/2023 4,630

Câu 3:

Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.

Xem đáp án » 13/07/2024 3,507

Câu 4:

Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).

Xem đáp án » 13/07/2024 3,444

Câu 5:

Giải phương trình sau: 3x . 2x + 1 = 72.

Xem đáp án » 13/07/2024 3,045

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và AB = 2DC. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SBC, H là giao điểm của DG và (SAC). Tính tỉ số \[\frac{{GH}}{{GD}}\].

Xem đáp án » 13/07/2024 2,337
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua