Câu hỏi:

23/08/2023 205

Cho hàm số y = f (x) thỏa mãn f ¢(x) = x2 5x + 4. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: f ¢(x) = x2 5x + 4 = 0

x=1x=4

Suy ra x1;4f'x<0x;14;+f'x>0

y'=14x12<0,xD.

Do đó hàm số nghịch biến trên khoảng (1; 4) và đồng biến trên hai khoảng (−∞; 1) và (4; +∞).

Vì (2; 3) Ì (1; 4) suy ra hàm số đã cho nghịch biến trên khoảng (2; 3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử z1 = a + bi (a, b Î ℝ), z2 = c + di (c, d Î ℝ)

Theo giả thiết, ta có:  z1=2z2=2z1+2z2=4

a2+b2=4c2+d2=4a+2c2+b+2d2=16

a2+b2=4                                          1c2+d2=4                                          2a2+b2+4c2+d2+4ac+bd=16  3

Thay (1), (2) vào (3) ta được: ac + bd = −1 (4)

Ta có:   2z1z2=2ac2+2bd2

 =4a2+b2+c2+d24ac+bd5

Thay (1), (2), (4) vào (5) ta có:  2z1z2=4.4+44.1=26.

Lời giải

Ta có:  y=sinx3cosx=212sinx32cosx

=2sinx.cosπ3cosx.sinπ3

=2sinxπ3

Ta có:  1sinxπ31

22sinxπ32

Dấu “=” xảy ra khi và chỉ khi:

sinxπ3=1xπ3=π2+k2πx=5π6+k2π,k

Vậy GTLN của hàm số bằng 2 khi  x=5π6+k2π,k.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP