Câu hỏi:

23/08/2023 326 Lưu

Biến đổi 03x1+1+xdx thành  12ftdt, với  t=1+x. Khi đó f (t) là hàm số nào trong các hàm số sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đặt  t=1+x suy ra t2 = 1 + x

Þ 2t dt = dx

Và x = t2 1

Đổi cận  x=0t=1x=3t=2, khi đó ta có:

I=12t211+t.2tdt=12t1t+11+t.2tdt

=122tt1dt=122t22tdt

Þ f (t) = 2t2 − 2t.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:  y=sinx3cosx=212sinx32cosx

=2sinx.cosπ3cosx.sinπ3

=2sinxπ3

Ta có:  1sinxπ31

22sinxπ32

Dấu “=” xảy ra khi và chỉ khi:

sinxπ3=1xπ3=π2+k2πx=5π6+k2π,k

Vậy GTLN của hàm số bằng 2 khi  x=5π6+k2π,k.

Lời giải

Giả sử z1 = a + bi (a, b Î ℝ), z2 = c + di (c, d Î ℝ)

Theo giả thiết, ta có:  z1=2z2=2z1+2z2=4

a2+b2=4c2+d2=4a+2c2+b+2d2=16

a2+b2=4                                          1c2+d2=4                                          2a2+b2+4c2+d2+4ac+bd=16  3

Thay (1), (2) vào (3) ta được: ac + bd = −1 (4)

Ta có:   2z1z2=2ac2+2bd2

 =4a2+b2+c2+d24ac+bd5

Thay (1), (2), (4) vào (5) ta có:  2z1z2=4.4+44.1=26.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP