Câu hỏi:

13/07/2024 215

Cho x, y là những số thực thoả mãn x2 − xy + y2 = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của  P=x4+y4+1x2+y2+1.

Tính giá trị của A = M + 15m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

+) 1 + xy = x2 + y2 ≥ 2xy Û xy £ 1 (Vì (x − y)2 = x2 + y2 − 2xy ≥ 0)

+) x2 − xy + y2 = 1

Û (x + y)2 − 3xy = 1

Û (x + y)2 = 1 + 3xy ≥ 0

xy13

Khi đó:  P=x4+y4+1x2+y2+1=x2+y222x2y2+1x2+y2+1

=1+xy22xy2+1xy+2

=1+2xy+xy22xy2+1xy+2=xy2+2xy+2xy+2

Đặt  t=xy,t13;1, xét hàm số  P=t2+2t+2t+2

P'=t24t+2t+22=0t=2+6

Ta tính được:  P13=1115;P1=1;P2+6=626

Khi đó  m=P13=1115;M=P2+6=626

Vậy  A=M+15m=626+15.1115=1726.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử z1 = a + bi (a, b Î ℝ), z2 = c + di (c, d Î ℝ)

Theo giả thiết, ta có:  z1=2z2=2z1+2z2=4

a2+b2=4c2+d2=4a+2c2+b+2d2=16

a2+b2=4                                          1c2+d2=4                                          2a2+b2+4c2+d2+4ac+bd=16  3

Thay (1), (2) vào (3) ta được: ac + bd = −1 (4)

Ta có:   2z1z2=2ac2+2bd2

 =4a2+b2+c2+d24ac+bd5

Thay (1), (2), (4) vào (5) ta có:  2z1z2=4.4+44.1=26.

Lời giải

Ta có:  y=sinx3cosx=212sinx32cosx

=2sinx.cosπ3cosx.sinπ3

=2sinxπ3

Ta có:  1sinxπ31

22sinxπ32

Dấu “=” xảy ra khi và chỉ khi:

sinxπ3=1xπ3=π2+k2πx=5π6+k2π,k

Vậy GTLN của hàm số bằng 2 khi  x=5π6+k2π,k.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP