Câu hỏi:

13/07/2024 172 Lưu

Cho f (x) là hàm số chẵn, liên tục trên đoạn [−1; 1] và  11fxdx=4. Kết quả I=11fx1+exdx bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt t = −x Þ dt = − dx

Đổi cận:  x=1t=1x=1t=1, khi đó:

I=11fx1+exdx=11ft1+etdt=11ft1+1etdt

=11ftet+1etdt=11et.ftet+1dt=11ex.fxex+1dx

Do f (x) là hàm số chẵn nên f (x) = f (−x) "x Î [−1; 1]

I=11fx1+exdx=11ex.fxex+1dx=11ex.fxex+1dx

I+I=11fx1+exdx+11ex.fxex+1dx=11ex+1.fxex+1dx

2I=11fxdx=4

I=11fx1+exdx=2


Vậy  I=11fx1+exdx=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:  y=sinx3cosx=212sinx32cosx

=2sinx.cosπ3cosx.sinπ3

=2sinxπ3

Ta có:  1sinxπ31

22sinxπ32

Dấu “=” xảy ra khi và chỉ khi:

sinxπ3=1xπ3=π2+k2πx=5π6+k2π,k

Vậy GTLN của hàm số bằng 2 khi  x=5π6+k2π,k.

Lời giải

Giả sử z1 = a + bi (a, b Î ℝ), z2 = c + di (c, d Î ℝ)

Theo giả thiết, ta có:  z1=2z2=2z1+2z2=4

a2+b2=4c2+d2=4a+2c2+b+2d2=16

a2+b2=4                                          1c2+d2=4                                          2a2+b2+4c2+d2+4ac+bd=16  3

Thay (1), (2) vào (3) ta được: ac + bd = −1 (4)

Ta có:   2z1z2=2ac2+2bd2

 =4a2+b2+c2+d24ac+bd5

Thay (1), (2), (4) vào (5) ta có:  2z1z2=4.4+44.1=26.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP