Câu hỏi:

19/08/2025 7,344 Lưu

Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng).

Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn hệ trục tọa độ Oxy như hình vẽ.

Phương trình Parabol (P) có dạng: y = ax2 + bx + c.

Parabol (P) đi qua điểm A(0; 0), B(162; 0), M(10; 43) nên ta có:

c=01622a+162b+c=0102a+10b+c=43c=0a=431520b=3483760

P:y=431520x2+3483760x

Do đó chiều cao của cổng là:

 h=Δ4a=b24ac4a=348376024.431520  .04.431520185,6  (m).

Vậy độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng) khoảng 185,6 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cosx = 1 x = k2π (k ℤ).

Vậy nghiệm của phương trình cosx = 1 là x = k2π (k ℤ).

Lời giải

Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm A và sản phẩm B trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm A lãi 4 triệu đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất ra một tấn sản phẩm B lãi được 3 triệu đồng người ta sử dụng máy I trong 6 giờ, máy II trong 3 giờ và máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 36 giờ, máy hai hoạt động không quá 23 giờ và máy III hoạt động không quá 27 giờ. Hãy lập kế hoạch sản xuất cho nhà máy để tiền lãi được nhiều nhất. (ảnh 1)

Gọi x ≥ 0, y ≥ 0 (tấn) là sản lượng cần sản xuất của sản phẩm A và sản phẩm B. 

Ta có:

x + 6y là thời gian hoạt động của máy I.

2x + 3y là thời gian hoạt động của máy II.

3x + 2y là thời gian hoạt động của máy III.

Số tiền lãi của nhà máy: T = 4x + 3y (triệu đồng).

Bài toán trở thành:

Tìm x ≥ 0, y ≥ 0 thỏa mãn  x+6y362x+3y233x+2y27 để T = 4x + 3y đạt giá trị lớn nhất.

 

Miền nghiệm của hệ là ngũ giác OABCD, ở đó:

 O0;0,A0;6,B103;499,C7;3,D9;0

Thay tọa độ các điểm vào biểu thức T ta được Tmax = 36 tại x = 7, y = 3.

Vậy nhà máy nên sản xuất 7 tấn sản phẩm A và 3 tấn sản phẩm B để tiền lãi được nhiều nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP