Câu hỏi:

18/09/2023 18,057

Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(|\Omega | = C_{12}^2 = 66\)

Gọi A là biến cố “ Bạn An và bạn Bình có phần thưởng giống nhau”

Gọi x là cặp số gồm 2 quyển Toán và Vật lý

y là cặp số gồm 2 quyển Toán và Hóa học

z là cặp số gồm 2 quyển Vật lý và Hóa học

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y + z = 12}\\{x + y = 7}\\{y + z = 9}\\{z + x = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{z = 5}\\{x + y = 7}\\{y + z = 9}\\{z + x = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 4}\\{z = 5}\end{array}} \right.} \right.\)

Suy ra số phần tử của biến cố A là: \(\left| {{\Omega _A}} \right| = C_3^2 + C_4^2 + C_5^2\)

Vậy xác suất cần tính là: \(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{|\Omega |}} = \frac{{C_3^2 + C_4^2 + C_5^2}}{{C_{12}^2}} = \frac{{19}}{{66}}\)

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6

Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách 

Suy ra n(Ω) = 720

Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”

TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này

Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)

Số cách xếp 3 học sinh còn lại là 3! = 6 cách

Suy ra có 2 . 4 . 6 = 48 cách

TH2: Học sinh lớp C ngồi ghế 1 hoặc 6 

Suy ra có 2 cách

Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.

Xếp 4 học sinh còn lại có 4! = 24 cách

Suy ra có 2 . 2 . 24 = 96 cách

Do đó n(A) = 48 + 96 = 144

Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)

Vậy ta chọn đáp án D.

Lời giải

Đáp án đúng là: C

Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)

\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)

\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)

\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)

Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]

Suy ra phương trình đã cho có hai nghiệm phân biệt

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tập xác định của hàm số \(f\left( x \right) = {\left( {9{{\rm{x}}^2} - 25} \right)^{ - 2}} + {\log _2}\left( {2{\rm{x}} + 1} \right)\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay