Câu hỏi:
15/09/2023 2,330Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AD = 2AB = 2CD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng \(\frac{{{a^3}\sqrt 3 }}{4}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Diện tích hình thang cân ABCD là \({{\rm{S}}_{{\rm{ABCD}}}} = \frac{{3{{\rm{a}}^2}\sqrt 3 }}{4}\)
Mà \({V_{S.ABC{\rm{D}}}} = \frac{{{a^3}\sqrt 3 }}{4} \Rightarrow SA = a\)
Gọi P, Q lần lượt là trung điểm của AB, BC
Suy ra PQ là đường trung bình của tam giác ABC
Do đó PQ // AC \( \Rightarrow ({\rm{SAC}})\,{\rm{//}}\,({\rm{MPQ}}){\rm{ }}\)
Do đó: \(\widehat {\left( {{\rm{MN;}}\left( {SAC} \right)} \right)} = \widehat {\left( {MN;({\rm{MPQ}})} \right)} = (\widehat {{\rm{MN}};{\rm{NH}}}) = \widehat {{\rm{MNH}}}\) với H là hình chiếu của N trên PQ
Xét tam giác SAB có P, M lần lượt là trung điểm của AB, BS
Suy ra PM là đường trung bình
Do đó PM // SA \( \Rightarrow {\rm{MP}} \bot ({\rm{ABCD}})\)
Suy ra tam giác MPN vuông tại P
Khi đó \({\rm{MN}} = \sqrt {{\rm{M}}{{\rm{P}}^2} + {\rm{N}}{{\rm{P}}^2}} = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{{3{\rm{a}}}}{2}} \right)}^2}} = \frac{{a\sqrt {10} }}{2}\) (định lý Pytago)
Ta có \({\rm{NH}} \bot {\rm{PQ}}\)
\( \Rightarrow {\rm{NH}} = \frac{3}{2}\;{\rm{d}}(\;{\rm{N}};({\rm{PQ}})) = \frac{3}{2}\;{\rm{d}}(\;{\rm{B}};({\rm{PQ}})) = \frac{3}{4}\)
Tam giác NMH vuông tại H, có \(\sin \widehat {MNH} = \frac{{NH}}{{MN}} = \frac{3}{4}:\frac{{\sqrt {10} }}{2} = \frac{{3\sqrt {10} }}{{20}}\)
Vậy ta chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
Câu 2:
Phương trình \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\) có bao nhiêu nghiệm?
Câu 3:
Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.
Câu 4:
Tìm tất cả các giá trị thực của tham số m để phương trình 3x = m có nghiệm thực:
Câu 5:
Tập xác định của hàm số \(f\left( x \right) = {\left( {9{{\rm{x}}^2} - 25} \right)^{ - 2}} + {\log _2}\left( {2{\rm{x}} + 1} \right)\) là:
Câu 6:
Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).
Câu 7:
Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60°. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính \(R = a\sqrt 3 \). Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận