Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60°. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính \(R = a\sqrt 3 \). Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60°. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính \(R = a\sqrt 3 \). Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
Quảng cáo
Trả lời:
Đáp án đúng là: A

Gọi K là trung điểm của AB, O là giao điểm của AC và BD. Gọi M là trung điểm của SA
Góc giữa mặt bên và đáy là \(\)\(\widehat {SKO} = 60^\circ \)
Trong tam giác SOA dựng đường thẳng trung trực MI của SA, I ∈ SO
Suy ra I là tâm mặt cầu ngoại tiếp hình chóp tứ giác
Đặt AB = b
Vì ABCD là hình vuông cạnh b có hai đường chéo cắt nhau tại O
Suy ra \(AK = BK = OK = \frac{1}{2}AB = \frac{b}{2}\) và tam giác OAK vuông tại K
Do đó \(OA = \sqrt {O{K^2} + K{{\rm{A}}^2}} = \sqrt {{{\left( {\frac{b}{2}} \right)}^2} + {{\left( {\frac{b}{2}} \right)}^2}} = \frac{{b\sqrt 2 }}{2}\)
Xét tam giác SOK có \(\tan 60^\circ = \frac{{SO}}{{OK}} \Rightarrow SO = OK.\tan 60^\circ = \frac{{b\sqrt 3 }}{2}\)
Vì tam giác SOA vuông tại O nên theo định lý Pytago có:
\[{\rm{S}}A = \sqrt {S{O^2} + O{A^2}} = \sqrt {{{\left( {\frac{{b\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{b\sqrt 2 }}{2}} \right)}^2}} = \frac{{b\sqrt 5 }}{2}\]
Xét ∆SMI và ∆SOA có:
\(\widehat {SMI} = \widehat {SOA}\left( { = 90^\circ } \right)\)
Chung góc \[\widehat {ASO}\]
Do đó (g.g)
Suy ra \(\frac{{SI}}{{SA}} = \frac{{SM}}{{SO}}\)
Suy ra \[{\rm{S}}I = \frac{{SM.SA}}{{SO}} = \frac{{\frac{1}{2}S{A^2}}}{{SO}} = \frac{{\frac{1}{2}.{{\left( {\frac{{b\sqrt 5 }}{2}} \right)}^2}}}{{\frac{{b\sqrt 3 }}{2}}} = \frac{{5\sqrt 3 b}}{{12}}\]
Mà \[\frac{{5\sqrt 3 b}}{{12}} = a\sqrt 3 \Rightarrow b = \frac{{12}}{5}a\]
Vậy ta chọn đáp án A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6
Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách
Suy ra n(Ω) = 720
Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”
TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này
Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)
Số cách xếp 3 học sinh còn lại là 3! = 6 cách
Suy ra có 2 . 4 . 6 = 48 cách
TH2: Học sinh lớp C ngồi ghế 1 hoặc 6
Suy ra có 2 cách
Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.
Xếp 4 học sinh còn lại có 4! = 24 cách
Suy ra có 2 . 2 . 24 = 96 cách
Do đó n(A) = 48 + 96 = 144
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)
Vậy ta chọn đáp án D.
Lời giải
Đáp án đúng là: C
Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)
\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)
Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]
Suy ra phương trình đã cho có hai nghiệm phân biệt
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.