Câu hỏi:

13/07/2024 1,493

Cho tam giác \(ABC\), trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\overrightarrow {NA} = 3\overrightarrow {CN} ;\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\)

a) Tính \(\overrightarrow {PM} ,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)

b) Chứng minh M, N, P thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, trên các đường thẳng BC, AC, AB  lần lượt lấy các điểm M, N, P (ảnh 1)

a) Ta có \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

Suy ra P là trung điểm AB.

Ta có \(\overrightarrow {MB} = 3\overrightarrow {MC} = 3\left( {\overrightarrow {MB} - \overrightarrow {CB} } \right) = 3\overrightarrow {MB} - 3\overrightarrow {CB} .\)

Suy ra \( - 2\overrightarrow {MB} = - 3\overrightarrow {CB} .\)

Do đó \(\overrightarrow {BM} = \frac{3}{2}\overrightarrow {BC} .\)

Ta có \(\overrightarrow {PM} = \overrightarrow {PB} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {BC} \)

\( = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \)

Ta có \(\overrightarrow {NA} = 3\overrightarrow {CN} = 3\left( {\overrightarrow {CA} - \overrightarrow {NA} } \right) = 3\overrightarrow {CA} - 3\overrightarrow {NA} \)

Suy ra \(4\overrightarrow {NA} = 3\overrightarrow {CA} \)

Do đó \(\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} .\)

Ta có \(\overrightarrow {PN} = \overrightarrow {PA} + \overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} .\)

b) Ta có \(\overrightarrow {PN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} = \frac{1}{2}\left( { - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {PM} .\)

Vậy ba điểm M, N, P thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có các trường hợp sau

TH 1: Đề thi gồm 2D, 3TB, 1K:\(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1.\)

TH 2: Đề thi gồm 2D, 1TB, 2K:\(C_{15}^2 \cdot C_{10}^1 \cdot C_5^2.\)

TH 3: Đề thi gồm 3D, 1TB, 1K:\(C_{15}^3 \cdot C_{10}^1 \cdot C_5^1.\)

Vậy có: \(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1 + C_{15}^2 \cdot C_{10}^1 \cdot C_5^2 + C_{15}^3 \cdot C_{10}^1 \cdot C_5^1 = 56875\) đề kiểm tra.

Đáp án cần chọn là: C

Câu 2

Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:

Lời giải

Đáp án đúng là: D

Công thức tính: Mật độ dân số = tổng số dân / tổng diện tích (người/km2)

- Áp dụng công thức:

 Đổi 331212 km= 0,331212 triệu km2

 Mật độ dân số  =90/0,331212 = 271,7 (người/km2)

 Làm tròn kết quả ta được: mật độ dân số nước ta là 272 người/km2.

Đáp án cần chọn là: D

Câu 4

Tính đạo hàm của hàm số \(y = {2^{{x^2}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay