Câu hỏi:
20/09/2023 270Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng \(\frac{{{a^3}}}{6}\). Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Áp dụng công thức: \(r = \frac{{3V}}{{{S_{tp}}}}\left( {\rm{*}} \right)\) và tam giác đều cạnh x có diện tích \(S = \frac{{{x^2}\sqrt 3 }}{4}\).
Từ giả thiết S.ABC dều có SA = SB = SC. Lại có SA, SB, SAC đôi một vuông góc và thể tích khối chóp \({\rm{S}}.{\rm{ABC}}\) bằng \(\frac{{{a^3}}}{6}\) nên ta có SA = SB = SC = a.
Suy ra \(AB = BC = CA = a\sqrt 2 \) và tam giác ABC đều cạnh có độ dài \(a\sqrt 2 \). Do đó diện tích toàn phần của khối chóp S.ABC là
Stp = SSAB + SSBC + SSCA + SABC
\( = 3\frac{{{a^2}}}{2} + \frac{{{{(a\sqrt 2 )}^2}\sqrt 3 }}{4} = \frac{{{a^2}\left( {3 + \sqrt 3 } \right)}}{2}\)
Thay vào \(\left( {\rm{*}} \right)\) ta được:
\(r = \frac{{3V}}{{{S_{tp}}}} = \frac{{3 \cdot \frac{{{a^3}}}{6}}}{{\frac{{{a^2}\left( {3 + \sqrt 3 } \right)}}{2}}} = \frac{a}{{3 + \sqrt 3 }}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:
Câu 2:
Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?
Câu 3:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông. Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.
Câu 5:
Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:
Câu 6:
Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3); N(0; -4); P(-1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?
Câu 7:
Cho hình hộp ABCD.A'B'CD' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60°. Tính khoảng cách giữa hai đường thẳng AB' và A'C'
về câu hỏi!