Cho tứ diện đều ABCD có một đường cao AA1. Gọi I là trung điểm AA1. Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.
Cho tứ diện đều ABCD có một đường cao AA1. Gọi I là trung điểm AA1. Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi cạnh của tứ diện đều là a.
Gọi K là trung điểm của CD và E = IK ∩ AB.
Qua A1 kẻ đường thẳng song song với IK cắt AB tại J.
Ta có:
\(\frac{{BJ}}{{BE}} = \frac{{B{A_1}}}{{BK}} = \frac{2}{3}\) và \(\frac{{AE}}{{EJ}} = \frac{{AI}}{{L{A_1}}} = 1\) nên suy ra \(AE = \frac{1}{4}AB = \frac{a}{4}\) và \(BE = \frac{{3a}}{4}\).
Gọi M là trung điểm của BE, trong mặt phẳng (ABK) dựng đường trung trực của BE cắt AA1 tại O. Ta dễ dàng chứng minh được O là tâm của mặt cầu ngoại tiếp EBCD.
Ta có: \(B{A_1} = \frac{{a\sqrt 3 }}{3},A{A_1} = \frac{{a\sqrt 6 }}{3}\). Đặt BE = x.
Tam giác ABA1 đồng dạng với tam giác AOM nên suy ra
\(\frac{{AM}}{{A{A_1}}} = \frac{{OM}}{{BH}} \Rightarrow OM = \frac{{AM \cdot BH}}{{A{A_1}}} = \left( {a - \frac{x}{2}} \right)\sqrt {\frac{1}{2}} {\rm{.\;}}\)
Gọi R là bán kính mặt cầu ngoại tiếp EBCD ta suy ra:
\(R = OB = \sqrt {O{M^2} + M{B^2}} = \sqrt {\frac{{{x^2}}}{4} + \frac{1}{2}{{\left( {a - \frac{x}{2}} \right)}^2}} .\)
Với \(x = \frac{{3a}}{4}\) ta có:
\(R = \sqrt {\frac{{9{a^2}}}{{64}} + \frac{1}{2}{{\left( {a - \frac{{3a}}{8}} \right)}^2}} = a\sqrt {\frac{{43}}{{128}}} .\)
Tương tự với \(x = \frac{a}{4}\) ta có bán kính R’ của mặt cầu ngoại tiếp EACD là
\(R' = \sqrt {\frac{{{a^2}}}{{64}} + \frac{1}{2}{{\left( {a - \frac{a}{4}} \right)}^2}} = a\sqrt {\frac{{51}}{{128}}} \)
Do đó \(\frac{R}{{R'}} = \sqrt {\frac{{43}}{{51}}} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có các trường hợp sau
TH 1: Đề thi gồm 2D, 3TB, 1K:\(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1.\)
TH 2: Đề thi gồm 2D, 1TB, 2K:\(C_{15}^2 \cdot C_{10}^1 \cdot C_5^2.\)
TH 3: Đề thi gồm 3D, 1TB, 1K:\(C_{15}^3 \cdot C_{10}^1 \cdot C_5^1.\)
Vậy có: \(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1 + C_{15}^2 \cdot C_{10}^1 \cdot C_5^2 + C_{15}^3 \cdot C_{10}^1 \cdot C_5^1 = 56875\) đề kiểm tra.
Đáp án cần chọn là: C
Lời giải
Đáp án đúng là: D
Công thức tính: Mật độ dân số = tổng số dân / tổng diện tích (người/km2)
- Áp dụng công thức:
Đổi 331212 km2 = 0,331212 triệu km2
Mật độ dân số =90/0,331212 = 271,7 (người/km2)
Làm tròn kết quả ta được: mật độ dân số nước ta là 272 người/km2.
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.