Câu hỏi:

20/09/2023 135

Cho tứ diện đều ABCD có một đường cao AA1. Gọi I là trung điểm AA1. Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi cạnh của tứ diện đều là a.

Gọi K là trung điểm của CD và E = IK ∩ AB.

Qua A1 kẻ đường thẳng song song với IK cắt AB tại J.

Ta có:

\(\frac{{BJ}}{{BE}} = \frac{{B{A_1}}}{{BK}} = \frac{2}{3}\)\(\frac{{AE}}{{EJ}} = \frac{{AI}}{{L{A_1}}} = 1\) nên suy ra \(AE = \frac{1}{4}AB = \frac{a}{4}\)\(BE = \frac{{3a}}{4}\).

Gọi M là trung điểm của BE, trong mặt phẳng (ABK) dựng đường trung trực của BE cắt AA1 tại O. Ta dễ dàng chứng minh được O là tâm của mặt cầu ngoại tiếp EBCD.

Ta có: \(B{A_1} = \frac{{a\sqrt 3 }}{3},A{A_1} = \frac{{a\sqrt 6 }}{3}\). Đặt BE = x.

Tam giác ABA1 đồng dạng với tam giác AOM nên suy ra

\(\frac{{AM}}{{A{A_1}}} = \frac{{OM}}{{BH}} \Rightarrow OM = \frac{{AM \cdot BH}}{{A{A_1}}} = \left( {a - \frac{x}{2}} \right)\sqrt {\frac{1}{2}} {\rm{.\;}}\)

Gọi R là bán kính mặt cầu ngoại tiếp EBCD ta suy ra:

\(R = OB = \sqrt {O{M^2} + M{B^2}} = \sqrt {\frac{{{x^2}}}{4} + \frac{1}{2}{{\left( {a - \frac{x}{2}} \right)}^2}} .\)

Với \(x = \frac{{3a}}{4}\) ta có:

\(R = \sqrt {\frac{{9{a^2}}}{{64}} + \frac{1}{2}{{\left( {a - \frac{{3a}}{8}} \right)}^2}} = a\sqrt {\frac{{43}}{{128}}} .\)

Tương tự với \(x = \frac{a}{4}\) ta có bán kính R’ của mặt cầu ngoại tiếp EACD

\(R' = \sqrt {\frac{{{a^2}}}{{64}} + \frac{1}{2}{{\left( {a - \frac{a}{4}} \right)}^2}} = a\sqrt {\frac{{51}}{{128}}} \)

Do đó \(\frac{R}{{R'}} = \sqrt {\frac{{43}}{{51}}} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?

Xem đáp án » 20/09/2023 19,723

Câu 2:

Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:

Xem đáp án » 20/09/2023 16,173

Câu 3:

Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông. Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.

Xem đáp án » 20/09/2023 4,896

Câu 4:

Tính đạo hàm của hàm số \(y = {2^{{x^2}}}.\)

Xem đáp án » 20/09/2023 3,815

Câu 5:

Trong hệ trục \[\left( {O;\overrightarrow i ;\overrightarrow j } \right)\] tọa độ của vectơ \[\overrightarrow i + \overrightarrow j \]là:

Xem đáp án » 19/09/2023 3,198

Câu 6:

Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:

Xem đáp án » 20/09/2023 3,065

Câu 7:

Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3);  N(0; -4); P(-1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?

Xem đáp án » 19/09/2023 2,571