Câu hỏi:
20/09/2023 248Cho ba điểm A, B, C không thẳng hàng và điểm M thỏa mãn đẳng thức vectơ \(\overrightarrow {AM} = x\overrightarrow {AB} + y\overrightarrow {AC} \). Đặt \(\overrightarrow {MA} = x\overrightarrow {MB} + y\overrightarrow {MC} \). Tính giá trị biểu thức P = x + y.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
\(\overrightarrow {AM} = x\overrightarrow {AB} + y\overrightarrow {AC} \Leftrightarrow \overrightarrow {AM} = x\left( {\overrightarrow {AM} + \overrightarrow {MB} } \right) + y\left( {\overrightarrow {AM} + \overrightarrow {MC} } \right)\)
\( \Leftrightarrow \left( {1 - x - y} \right)\overrightarrow {AM} = x\overrightarrow {MB} + y\overrightarrow {MC} \Leftrightarrow \left( {x + y - 1} \right)\overrightarrow {MA} = x\overrightarrow {MB} + y\overrightarrow {MC} \)
Theo bài ra, ta có \(\overrightarrow {MA} = x\overrightarrow {MB} + y\overrightarrow {MC} \) suy ra x + y ‒ 1 = 1 ⇔ x + y = 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:
Câu 2:
Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?
Câu 3:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông. Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.
Câu 5:
Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:
Câu 6:
Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3); N(0; -4); P(-1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?
Câu 7:
Cho hình hộp ABCD.A'B'CD' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60°. Tính khoảng cách giữa hai đường thẳng AB' và A'C'
về câu hỏi!