Cho đường thẳng (d): y = (m − 1)x + 3 (với m là tham số). Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng \[\sqrt 2 .\]
Cho đường thẳng (d): y = (m − 1)x + 3 (với m là tham số). Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng \[\sqrt 2 .\]
Quảng cáo
Trả lời:

Cho x = 3 thì y = 3. Suy ra (d) cắt trục Oy tại điểm B(0; 3)
Cho y = 0 thì \(x = \frac{3}{{1 - m}}\left( {m \ne 1} \right)\). Suy ra (d) cắt trục 0 x tại điểm \(A\left( {\frac{3}{{1 - m}};0} \right)\)
Ta có: \(OA = \frac{3}{{\left| {1 - m} \right|}},OB = 3\). Gọi h là khoảng cách từ O đến đường thẳng d.
\( \Rightarrow \frac{1}{{{h^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} = \frac{{{{(1 - m)}^2}}}{9} + \frac{1}{9} = \frac{{{m^2} - 2m + 2}}{9}\)
Theo giả thiết, \(h = \sqrt 2 \Leftrightarrow {h^2} = 2 \Leftrightarrow \frac{9}{{{m^2} - 2m + 2}} = 2\)
\( \Leftrightarrow 2{m^2} - 4m - 5 = 0 \Leftrightarrow m = \frac{{2 \pm \sqrt {14} }}{2}.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 41811.
B. 42802.
C. 56875.
D. 32023.
Lời giải
Đáp án đúng là: C
Ta có các trường hợp sau
TH 1: Đề thi gồm 2D, 3TB, 1K:\(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1.\)
TH 2: Đề thi gồm 2D, 1TB, 2K:\(C_{15}^2 \cdot C_{10}^1 \cdot C_5^2.\)
TH 3: Đề thi gồm 3D, 1TB, 1K:\(C_{15}^3 \cdot C_{10}^1 \cdot C_5^1.\)
Vậy có: \(C_{15}^2 \cdot C_{10}^2 \cdot C_5^1 + C_{15}^2 \cdot C_{10}^1 \cdot C_5^2 + C_{15}^3 \cdot C_{10}^1 \cdot C_5^1 = 56875\) đề kiểm tra.
Đáp án cần chọn là: C
Câu 2
A. 227 người/km2.
B. 722 người/km2.
C. 277 người/km2.
D. 272 người/km2.
Lời giải
Đáp án đúng là: D
Công thức tính: Mật độ dân số = tổng số dân / tổng diện tích (người/km2)
- Áp dụng công thức:
Đổi 331212 km2 = 0,331212 triệu km2
Mật độ dân số =90/0,331212 = 271,7 (người/km2)
Làm tròn kết quả ta được: mật độ dân số nước ta là 272 người/km2.
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. min F = 1 khi x = 2; y = 3.
B. min F =2 khi x = 0; y = 2.
C. min F = 3 khi x = 1; y = 4.
D. min F = 0 khi x = 0; y = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y' = \frac{{x \cdot {2^{1 + {x^2}}}}}{{{\rm{ln}}2}}.\)
B. \(y' = x \cdot {2^{1 + {x^2}}} \cdot {\rm{ln}}2.\)
C. \(y' = {2^x} \cdot {\rm{ln}}{2^x}.\)
D. \(y' = \frac{{x \cdot {2^{1 + x}}}}{{{\rm{ln}}2}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. (‒1; 1).
B. (1; 0).
C. (0; 1).
D. (1; 1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\frac{5}{6}.\]
B. \[\frac{{611}}{{715}}.\]
C. \[\frac{{600}}{{713}}.\]
D. \[\frac{6}{7}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.