Câu hỏi:
20/09/2023 84Tìm m để phương trình x2 − (2m + 1)x + m2 + 1=0 có 2 nghiệm x1; x2 thỏa mãn x2 = 2x1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
△ = (2m + 1)2 ‒ 4(m2 + 1) = 4m2 + 4m + 1 ‒ 4m2 ‒ 4 = 4m ‒ 3.
Để phương trình có 2 nghiệm
Theo hệ thức Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m + 1}\\{{x_1}{x_2} = {m^2} + 1}\end{array}} \right.\)
Để 2 nghiệm \({x_1};{x_2}\) thỏa mãn \({x_2} = 2{x_1}\) ta có:
\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m + 1}\\{{x_1}{x_2} = {m^2} + 1}\\{{x_2} = 2{x_1}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3{x_1} = 2m + 1}\\{2x_1^2 = {m^2} + 1}\\{{x_2} = 2{x_1}}\end{array}} \right.} \right.\)
\({x_1} = \frac{{2m + 1}}{3}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}3\\{{x_2} = \frac{{2\left( {2m + 1} \right)}}{3}}\\{2.\frac{{{{(2m + 1)}^2}}}{9} = {m^2} + 1\left( {\rm{*}} \right)}\end{array}} \right.\)
Giải (*) :
\(\frac{{2{{(2m + 1)}^2}}}{9} = {m^2} + 1 \Leftrightarrow 2\left( {4{m^2} + 4m + 1} \right) = 9\left( {{m^2} + 1} \right) \Leftrightarrow {m^2} - 8m + 7 = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = 7}\end{array}\left( {{\rm{tm}}} \right)} \right.\)
Vậy m = 1; m = 7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:
Câu 2:
Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?
Câu 3:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông. Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.
Câu 5:
Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:
Câu 6:
Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3); N(0; -4); P(-1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?
Câu 7:
Cho hình hộp ABCD.A'B'CD' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60°. Tính khoảng cách giữa hai đường thẳng AB' và A'C'
về câu hỏi!