Câu hỏi:

13/07/2024 7,529

Một chất điểm dao động điều hoà. Biết li độ và vận tốc của chất điểm tại thời điểm \({t_1}\) lần lượt là \({x_1} = 3{\rm{\;cm}}\)\({v_1} = - 60\sqrt 3 {\rm{\;cm}}/{\rm{s}}\); tại thời điểm \({{\rm{t}}_2}\) lần lượt là \({x_2} = 3\sqrt 2 {\rm{\;cm}}\)\({v_2} = 60\sqrt 2 {\rm{\;cm}}/{\rm{s}}\). Biên độ và tần số góc của dao động lần lượt là:

A. \(6{\rm{\;cm}};20{\rm{rad}}/{\rm{s}}\).   

B. \(6{\rm{\;cm}};12{\rm{rad}}/{\rm{s}}\).   

C. \(12{\rm{\;cm}};20{\rm{rad}}/{\rm{s}}\). 

D. \(12{\rm{\;cm}};10{\rm{rad}}/{\rm{s}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là A

Thiết lập và áp dụng công thức: \(\left\{ \begin{array}{l}\frac{{x_1^2}}{{{A^2}}} + \frac{{v_1^2}}{{{\omega ^2}{A^2}}} = 1\\\frac{{x_2^2}}{{{A^2}}} + \frac{{v_2^2}}{{{\omega ^2}{A^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x_1^2{\omega ^2} + v_1^2 = {\omega ^2}{A^2}\\x_2^2{\omega ^2} + v_2^2 = {\omega ^2}{A^2}\end{array} \right.\)

 \( \Rightarrow \omega = \sqrt {\frac{{v_2^2 - v_1^2}}{{x_1^2 - x_2^2}}} = \sqrt {\frac{{{{2.60}^2} - {{3.60}^2}}}{{9 - 2.9}}} = 20\,\,{\rm{rad/s}}{\rm{.}}\)

\( \Rightarrow A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}} = \sqrt {{3^2} + \frac{{3 \cdot {{60}^2}}}{{{{20}^2}}}} = 6\;{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

A – sai vì quỹ đạo là đoạn thẳng.                     

C, D – sai vì vận tốc và gia tốc biến thiên điều hoà theo thời gian.      

Lời giải

Áp dụng công thức: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{\omega ^2}{A^2}}} = 1 \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{\left( { - 2} \right)}^2} + \frac{{{{10}^2}}}{{{5^2}}}} = 2\sqrt 2 {\rm{\;cm}}{\rm{.\;}}\)

Theo đề bài khi \({\rm{t}} = 0\) thì: \(x = - 2{\rm{\;cm}} = - \frac{{A\sqrt 2 }}{2} < 0\) và có chiều hướng về vị trí biên gần nhất (Hình 3.1G) nên \(\varphi = \frac{{3\pi }}{4}\).

Phương trình dao động: \(x = 2\sqrt 2 {\rm{cos}}\left( {5t + \frac{{3\pi }}{4}} \right)\left( {{\rm{cm}}} \right).\)

Một vật dao động điều hoà với tần số góc omega = 5 rad/s. Khi t = 0, vật đi qua (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay