Câu hỏi:

13/07/2024 3,557

Hình 3.1 mô tả sự biến thiên vận tốc theo thời gian của một vật dao động điều hoà.

Hình 3.1 Viết phương trình vận tốc theo thời gian (ảnh 1)

Hình 3.1

Viết phương trình vận tốc theo thời gian

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ đồ thị ta xác định được:

\({\rm{T}} = 0,4{\rm{\;s}} \Rightarrow \omega = \frac{{2\pi }}{{\rm{T}}} = \frac{{2\pi }}{{0,4}} = 5\pi \left( {{\rm{rad}}/{\rm{s}}} \right);{v_{{\rm{max}}}} = 0,3{\rm{\;m}}/{\rm{s}}\).

 Khi \({\rm{t}} = 0\) thì \({\rm{v}} = {{\rm{v}}_{{\rm{max}}}}\)\( \Rightarrow \varphi = 0\), vậy phương trình vận tốc theo thời gian là: \(v = 0,3{\rm{cos}}5\pi {\rm{t}}\left( {{\rm{m/s}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

A – sai vì quỹ đạo là đoạn thẳng.                     

C, D – sai vì vận tốc và gia tốc biến thiên điều hoà theo thời gian.      

Lời giải

Áp dụng công thức: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{\omega ^2}{A^2}}} = 1 \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{\left( { - 2} \right)}^2} + \frac{{{{10}^2}}}{{{5^2}}}} = 2\sqrt 2 {\rm{\;cm}}{\rm{.\;}}\)

Theo đề bài khi \({\rm{t}} = 0\) thì: \(x = - 2{\rm{\;cm}} = - \frac{{A\sqrt 2 }}{2} < 0\) và có chiều hướng về vị trí biên gần nhất (Hình 3.1G) nên \(\varphi = \frac{{3\pi }}{4}\).

Phương trình dao động: \(x = 2\sqrt 2 {\rm{cos}}\left( {5t + \frac{{3\pi }}{4}} \right)\left( {{\rm{cm}}} \right).\)

Một vật dao động điều hoà với tần số góc omega = 5 rad/s. Khi t = 0, vật đi qua (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP