Câu hỏi:

13/07/2024 3,081 Lưu

Đại lượng nào sau đây tăng gấp đôi khi biên độ của dao động điều hoà của con lắc lò xo tăng gấp đôi?

A. Cơ năng của con lắc.                                   

B. Động năng của con lắc.

C. Vận tốc cực đại.                                          

D. Thế năng của con lắc.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Biên độ tăng gấp đôi thì cơ năng tăng 4 lần, động năng và thế năng phụ thuộc vào vị trí và vận tốc của vật. Chỉ có vận tốc cực đại \[{v_{\max }} = A\omega \] tăng gấp đôi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Thời gian giữa năm lần liên tiếp động năng bằng thế năng là:

\(4 \cdot \frac{T}{4} = 0,4 \Rightarrow T = 0,4{\rm{\;s}} \Rightarrow f = \frac{1}{{0,4}} = 2,5{\rm{\;Hz}}\)

Lời giải

Gọi \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng, ta có: \({\rm{\Delta }}{l_0} = 2,5{\rm{\;cm}} = 0,025{\rm{\;m}}\).

Tại vị trí cân bằng: \({\rm{k}} \cdot {\rm{\Delta }}{l_0} = {\rm{mg}} \Rightarrow {\rm{k}} = \frac{{{\rm{mg}}}}{{{\rm{\Delta }}{l_0}}} = \frac{{0,1 \cdot 10}}{{0,025}} = 40{\rm{\;N/m}}\).

\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{40}}{{0,1}}} = 20{\rm{rad/s}}\).

Theo đề bài, khi \({\rm{t}} = 0\) thì \({\rm{x}} = - 2{\rm{\;cm}}\)\({\rm{v}} = - 40\sqrt 3 {\rm{\;cm/s}}\)

\( \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{( - 2)}^2} + \frac{{{{(40\sqrt 3 )}^2}}}{{{{(20)}^2}}}} = 4{\rm{\;cm}}\).

Vậy tại thời điểm \(t = 0\) thì \(x = - 2\,cm = - \frac{A}{2}\)\(v < 0\), nên \(\varphi = \frac{{2\pi }}{3}\), phương trình dao động là: \(x = 4{\rm{cos}}\left( {20t + \frac{{2\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\)

Cơ năng của dao động: \(W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2} \cdot 0,1{(20)^2}{(0,04)^2} = 0,032{\rm{\;J}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP