Câu hỏi:

13/07/2024 5,518 Lưu

Cơ năng của một chất điểm dao động điều hoà tỉ lệ thuận với

A. chu kì dao động.                                         

B. biên độ dao động.

C. bình phương biên độ dao động.                   

D. bình phương chu kì dao động.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Cơ năng của một chất điểm dao động điều hoà tỉ lệ thuận với bình phương biên độ dao động theo công thức \[W = \frac{1}{2}m{\omega ^2}{A^2}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Thời gian giữa năm lần liên tiếp động năng bằng thế năng là:

\(4 \cdot \frac{T}{4} = 0,4 \Rightarrow T = 0,4{\rm{\;s}} \Rightarrow f = \frac{1}{{0,4}} = 2,5{\rm{\;Hz}}\)

Lời giải

Gọi \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng, ta có: \({\rm{\Delta }}{l_0} = 2,5{\rm{\;cm}} = 0,025{\rm{\;m}}\).

Tại vị trí cân bằng: \({\rm{k}} \cdot {\rm{\Delta }}{l_0} = {\rm{mg}} \Rightarrow {\rm{k}} = \frac{{{\rm{mg}}}}{{{\rm{\Delta }}{l_0}}} = \frac{{0,1 \cdot 10}}{{0,025}} = 40{\rm{\;N/m}}\).

\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{40}}{{0,1}}} = 20{\rm{rad/s}}\).

Theo đề bài, khi \({\rm{t}} = 0\) thì \({\rm{x}} = - 2{\rm{\;cm}}\)\({\rm{v}} = - 40\sqrt 3 {\rm{\;cm/s}}\)

\( \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{( - 2)}^2} + \frac{{{{(40\sqrt 3 )}^2}}}{{{{(20)}^2}}}} = 4{\rm{\;cm}}\).

Vậy tại thời điểm \(t = 0\) thì \(x = - 2\,cm = - \frac{A}{2}\)\(v < 0\), nên \(\varphi = \frac{{2\pi }}{3}\), phương trình dao động là: \(x = 4{\rm{cos}}\left( {20t + \frac{{2\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\)

Cơ năng của dao động: \(W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2} \cdot 0,1{(20)^2}{(0,04)^2} = 0,032{\rm{\;J}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP