Câu hỏi:

13/07/2024 3,242

Hãy phân tích sự chuyển hoá năng lượng giữa động năng và thế năng trong hệ gồm hai lò xo và vật nặng \({\rm{m}}\) được mắc như Hình 5.1. khi quả nặng được thả cho dao động.

Hãy phân tích sự chuyển hoá năng lượng giữa động năng và thế năng trong hệ gồm  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi chưa được thả ra vật nặng đứng yên, nên động năng bằng 0, cả hai lò xo đều bị biến dạng và dự trữ năng lượng dưới dạng thế năng. Khi được thả ra, lò xo bên trái đang bị dãn sẽ kéo vật nặng sang trái, lò xo bên phải đang bị nén sẽ đẩy vật sang trái. Vậy, vật sẽ chuyển động sang trái và động năng của vật tăng còn thế năng của hệ hai lò xo và vật nặng giảm, tới khi hai lò xo có chiều dài tự nhiên thì thế năng của hệ bằng 0 và động năng đạt cực đại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\frac{{{F_{{\rm{max}}}}}}{{{F_{{\rm{min}}}}}} = \frac{{k\left( {{\rm{\Delta }}{l_0} + A} \right)}}{{k\left( {{\rm{\Delta }}{l_0} - A} \right)}} = \frac{7}{3} \Rightarrow 3\left( {{\rm{\Delta }}{l_0} + A} \right) = 7\left( {{\rm{\Delta }}{l_0} - A} \right)\)\( \Rightarrow {\rm{\Delta }}{l_0} = 2,5{\rm{\;A}} = 25{\rm{\;cm}} = 0,25{\rm{\;m}}\).

Với \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng.

\(\omega = \sqrt {\frac{g}{{{\rm{\Delta }}{l_0}}}} = \sqrt {\frac{{10}}{{0,25}}} = 2\pi \left( {{\rm{rad}}/{\rm{s}}} \right) \Rightarrow f = \frac{\omega }{{2\pi }} = 1{\rm{\;Hz}}\).

Lời giải

Đáp án đúng là A

Thời gian giữa năm lần liên tiếp động năng bằng thế năng là:

\(4 \cdot \frac{T}{4} = 0,4 \Rightarrow T = 0,4{\rm{\;s}} \Rightarrow f = \frac{1}{{0,4}} = 2,5{\rm{\;Hz}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP