Câu hỏi:
13/07/2024 12,875
Một máy bay có 4 động cơ trong đó 2 động cơ ở cánh phải và 2 động cơ ở cánh trái. Chuyến bay hạ cánh an toàn khi trên mỗi cánh của nó có ít nhất một động cơ không bị lỗi. Giả sử mỗi động cơ ở cánh phải có xác suất bị lỗi là 0,01 và mỗi động cơ ở cánh trái có xác suất bị lỗi là 0,015. Các động cơ hoạt động độc lập với nhau. Tính xác suất để chuyến bay hạ cánh an toàn.
Một máy bay có 4 động cơ trong đó 2 động cơ ở cánh phải và 2 động cơ ở cánh trái. Chuyến bay hạ cánh an toàn khi trên mỗi cánh của nó có ít nhất một động cơ không bị lỗi. Giả sử mỗi động cơ ở cánh phải có xác suất bị lỗi là 0,01 và mỗi động cơ ở cánh trái có xác suất bị lỗi là 0,015. Các động cơ hoạt động độc lập với nhau. Tính xác suất để chuyến bay hạ cánh an toàn.
Quảng cáo
Trả lời:
Gọi biến cố E: “Cánh phải có ít nhất một động cơ không bị lỗi”;
Biến cố F: “Cánh trái có ít nhất một động cơ không bị lỗi”;
Biến cố : “Cả hai động cơ ở cánh phải đều bị lỗi”;
Biến cố : “Cả hai động cơ ở cánh trái đều bị lỗi”.
Biến cố M: “Chuyến bay hạ cánh an toàn”.
Vì các động cơ hoạt động độc lập với nhau nên ta có:
; .
Suy ra ; .
Vì E, F là các biến cố độc lập nên P(M) = P(EF) = P(E) × P(F) = 0,9999 × 0,999775 » 0,9997.
Vậy xác suất để chuyến bay đó hạ cánh an toàn khoảng 0,9997.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Kẻ AD ^ BC tại D.
Vì SA ^ (ABC) nên SA ^ BC mà AD ^ BC nên BC ^ (SAD), suy ra (SBC) ^ (SAD).
Kẻ AF ^ SD tại F.
Vì (SBC) ^ (SAD), (SBC) Ç (SAD) = SD, AF ^ SD nên AF ^ (SBC).
Suy ra d(A, (SBC)) = AF.
Vì tam giác ABC đều cạnh a, AD là đường cao nên AD = .
Vì SA ^ (ABC) nên SA ^ AD hay tam giác SAD vuông tại A.
Xét tam giác SAD vuông tại A, AF là đường cao nên ta có
.
Vậy d(A, (SBC)) = .
Lời giải

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.
Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').
Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .
Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.
Xét tam giác ABC vuông tại B có .
Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.
Xét tam giác ACC' vuông tại C, có .
Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = .
Vì O là trung điểm của AC nên CO = .
Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD Ì (BDC') nên (BDC') (ACC'A') .
Kẻ CE C'O tại E.
Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').
Khi đó d(C, (BDC')) = CE.
Xét tam giác C'CO vuông tại C, CE là đường cao có:
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.