Câu hỏi:

13/07/2024 12,875

Một máy bay có 4 động cơ trong đó 2 động cơ ở cánh phải và 2 động cơ ở cánh trái. Chuyến bay hạ cánh an toàn khi trên mỗi cánh của nó có ít nhất một động cơ không bị lỗi. Giả sử mỗi động cơ ở cánh phải có xác suất bị lỗi là 0,01 và mỗi động cơ ở cánh trái có xác suất bị lỗi là 0,015. Các động cơ hoạt động độc lập với nhau. Tính xác suất để chuyến bay hạ cánh an toàn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi biến cố E: “Cánh phải có ít nhất một động cơ không bị lỗi”;

Biến cố F: “Cánh trái có ít nhất một động cơ không bị lỗi”;

Biến cố E¯ : “Cả hai động cơ ở cánh phải đều bị lỗi”;

Biến cố F¯  : “Cả hai động cơ ở cánh trái đều bị lỗi”.

Biến cố M: “Chuyến bay hạ cánh an toàn”.

các động cơ hoạt động độc lập với nhau nên ta có:

PE¯=0,010,01=104,PF¯=0,0150,015=2,25104; .

Suy ra PE=1PE¯=0,9999  ; PF=1PF¯=0,999775 .

Vì E, F là các biến cố độc lập nên P(M) = P(EF) = P(E) × P(F) = 0,9999 × 0,999775 » 0,9997.

Vậy xác suất để chuyến bay đó hạ cánh an toàn khoảng 0,9997.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA  (ABC), SA= a căn 2 . Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 1)

 

Kẻ AD ^ BC tại D.

Vì SA ^ (ABC) nên SA ^ BC mà AD ^ BC nên BC ^ (SAD), suy ra (SBC) ^ (SAD).

Kẻ AF ^ SD tại F.

Vì (SBC) ^ (SAD), (SBC) Ç (SAD) = SD, AF ^ SD nên AF ^ (SBC).

Suy ra d(A, (SBC)) = AF.

Vì tam giác ABC đều cạnh a, AD là đường cao nên AD = a32 .

Vì SA ^ (ABC) nên SA ^ AD hay tam giác SAD vuông tại A.

Xét tam giác SAD vuông tại A, AF là đường cao nên ta có

 1AF2=1SA2+1AD2=12a2+43a2=12a2+43a2=116a2AF=66a11 .

Vậy d(A, (SBC)) = 66a11  .

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có AC'= a căn 3 . Khoảng cách giữa hai đường thẳng AB' và BC' bằng (ảnh 1)

 

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.

Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').

Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .

Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.

Xét tam giác ABC vuông tại B có AC=AB2+BC2=a2+a2=a2  .

Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.

Xét tam giác ACC' vuông tại C, có  AC'2=AC2+CC'23=2a2+a2a=1.

Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = 2  .

Vì O là trung điểm của AC nên CO = 22  .

Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD Ì (BDC') nên (BDC') (ACC'A') .

Kẻ CE C'O tại E.

Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').

Khi đó d(C, (BDC')) = CE.

Xét tam giác C'CO vuông tại C, CE là đường cao có:

1CE2=1CC'2+1CO2=11+1222=3CE2=13CE=33.

dAB',BC'=33

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP