Câu hỏi:

11/07/2024 8,021

Một đèn lồng có dạng hình chóp tứ giác đều có cạnh đáy bằng 15 cm, độ dài trung đoạn bằng 10 cm. Diện tích giấy dán kín bốn mặt bên của đèn lồng là (coi như mép dán không đáng kể) là:

A. 200 cm2.

B. 300 cm2.

C. 400 cm2.

D. 500 cm2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Diện tích giấy dán bốn mặt bên của đèn lồng là:

\({S_{xq}} = p \cdot d = \frac{1}{2} \cdot 15 \cdot 4 \cdot 10 = 300\) (cm2).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có DH là đường cao của tam giác BCD.

Vì tam giác BCD đều nên BC = DB = CD = 12 cm và DH là đường cao đồng thời là đường trung tuyến của tam giác. Do đó, \(HC = \frac{1}{2}CB = 6\) cm.

Tam giác ABC cân tại A nên AH là đường trung tuyến đồng thời là đường cao, vậy AH là một trung đoạn của hình chóp A.BCD.

Áp dụng định lí Pythagore vào tam giác CHA vuông tại H có:

HA2 + HC2 = CA2

Suy ra HA2 = CA2 – CH2 = 102 – 62 = 64 nên HA = 8 cm.

Chu vi tam giác DBC là: BD + BC + CD = 12 + 12 + 12 = 36 (cm).

Diện tích xung quanh hình chóp là:

\({S_{xq}} = p \cdot d = \frac{1}{2} \cdot 36 \cdot 8 = 144\) (cm2).

Lời giải

Lời giải

Ta có IC, BE là các đường cao của tam giác đều ABC.

O là giao điểm của BE và IC, khi đó SO là đường cao của hình chóp tam giác đều S.ABC.

Tam giác ABC là tam giác đều nên AB = BC = 6 cm.

CI là đường cao đồng thời là đường trung tuyến. Do đó, ta có: \(BI = \frac{1}{2}AB = 3\) (cm).

Áp dụng định lí Pythagore vào tam giác CBI vuông tại I có:

BI2 + IC2 = BC2

Suy ra IC2 = BC2 – BI2 = 62 – 32 = 27.

Do đó, BI = \(\sqrt {27} \approx 5,2\) (cm).

Diện tích tam giác ABC là:

\(S = \frac{1}{2}IC \cdot AB \approx \frac{1}{2} \cdot 5,2 \cdot 6 = 15,6\) (cm2).

Thể tích hình chóp là: \(V = \frac{1}{3}S \cdot SO \approx \frac{1}{3} \cdot 15,6 \cdot 8 = 41,6\) (cm3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay