Câu hỏi:

02/11/2023 1,163

Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Xác suất để hai học sinh tên Anh lên bảng bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Chọn ngẫu nhiên 2 học sinh từ 40 học sinh. Số phần tử của không gian mẫu  nΩ = C402 = 780.

Gọi A là biến cố: “Gọi hai học sinh tên Anh lên bảng”

Ta có  nA = C42 = 6.

Vậy xác suất cần tìm là  PA = 6780 = 1130.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Chọn mỗi hộp 1 viên bi. Số phần tử của không gian mẫu:  nΩ=C151C181=270.

Biến cố A: “Hai viên bi được lấy ra có cùng màu”

Trường hợp 1: 2 viên màu trắng, có  C41C71=28 cách chọn.

Trường hợp 2: 2 viên màu đỏ, có  C51C61=30 cách chọn.

Trường hợp 3: 2 viên màu xanh, có  C61C51=30 cách chọn.

Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 28 + 30 + 30 = 88.

Suy ra n(A) = 88.

Vậy xác suất cần tìm là  PA=nAnΩ=88270=44135.

Lời giải

Đáp án đúng là: A

Mỗi bạn viết 1 số từ 17 số. Số phần tử của không gian mẫu là:  nΩ = 173.

Trong các số tự nhiên thuộc đoạn [1; 17] có 5 số chia hết cho 3 là {3; 6; 9 12; 15}, có 6 số chia cho 3 dư 1 là {1; 4; 7; 10; 13; 16}, có 6 số chia cho 3 dư 2 là {2; 5; 8; 11; 14; 17}.

Để ba số được viết ra có tổng chia hết cho 3 cần phải xảy ra các trường hợp sau:

Trường hợp 1: Cả ba số viết ra đều chia hết cho .

Trong trường hợp này có: 53 cách viết.

Trường hợp 2: Cả ba số viết ra đều chia cho 3 dư 1.

Trong trường hợp này có: 63 cách viết.

Trường hợp 3: Cả ba số viết ra đều chia cho 3 dư 2.

Trong trường hợp này có: 63 cách viết.

Trường hợp 4: Trong ba số được viết ra có 1 số chia hết cho 3, có 1 số chia cho 31, có 1 số chia cho 32.

Trong trường hợp này có:  5663! cách viết.

Vậy xác suất cần tìm là:  PA = 53  +  63  +  63  +  5663!173 = 1 6374 913.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay